Re: [線代] 內積矩陣?!
※ 引述《daria20538 (PP)》之銘言:
: Let V is an inner product space over R with dim(V) = 2
: give B = {w1,w2} a basis of V
: Denote E = <w1,w1> , F = <w1,w2>=<w2,w1> , G = <w2,w2>
: [E F]
: Then A = [ ] have positive determinant
: [F G]
: i.e. ∥w1∥^2 ∥w2∥^2 - <w1,w2>^2 > 0
: This can be proved by Cauchy-Schwarz inequality
: (且因為w1,w2線性獨立,所以等號不成立)
: 接著是我猜的,想請問一下對錯及證法:
: Let V is an inner product space over R with dim(V) = n
: give B = {w1,...,wn} a basis of V
: Denote a_11 = <w1,w1> , ... a_nn = <wn,wn>
: a_12 = <w1,w2> = <w2,w1> = a_21
: if i=/=j , a_ij = <wi,wj> = <wj,wi>
: [a_11 ‧‧‧ a_1n]
: [ ‧ ‧‧‧ ‧ ]
: Then A =[ ‧ ‧‧‧ ‧ ] has positive determinant
: [ ‧ ‧‧‧ ‧ ]
: [a_n1 ‧‧‧ a_nn]
: 如果這個結果是錯的話,那能否放寬,只要det(A) =/= 0 即可呢??
: 謝謝指教!!!
反正是有限維,就固定一組直交基底{e_1,...,e_n}
把向量w_i 用基底{e_1,...,e_n}表示
那麼 w_i = b_i1e_1+...+b_ine_n
如此一來 <w_i,w_j>=b_i1b_j1+...+b_inb_jn
令B=[b_jk]則A= B^TB
所以det A= det B^Tdet B=|det B|^2>=0.
因為{w_1,...,w_n}是基底,所以det B>0.所以det A>0.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 88.77.147.125
討論串 (同標題文章)