[線代] 內積矩陣?!

看板Math作者 (PP)時間14年前 (2012/03/15 02:31), 編輯推噓1(103)
留言4則, 2人參與, 最新討論串1/2 (看更多)
Let V is an inner product space over R with dim(V) = 2 give B = {w1,w2} a basis of V Denote E = <w1,w1> , F = <w1,w2>=<w2,w1> , G = <w2,w2> [E F] Then A = [ ] have positive determinant [F G] i.e. ∥w1∥^2 ∥w2∥^2 - <w1,w2>^2 > 0 This can be proved by Cauchy-Schwarz inequality (且因為w1,w2線性獨立,所以等號不成立) 接著是我猜的,想請問一下對錯及證法: Let V is an inner product space over R with dim(V) = n give B = {w1,...,wn} a basis of V Denote a_11 = <w1,w1> , ... a_nn = <wn,wn> a_12 = <w1,w2> = <w2,w1> = a_21 if i=/=j , a_ij = <wi,wj> = <wj,wi> [a_11 ‧‧‧ a_1n] [ ‧ ‧‧‧ ‧ ] Then A =[ ‧ ‧‧‧ ‧ ] has positive determinant [ ‧ ‧‧‧ ‧ ] [a_n1 ‧‧‧ a_nn] 如果這個結果是錯的話,那能否放寬,只要det(A) =/= 0 即可呢?? 謝謝指教!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.217.103

03/15 02:44, , 1F
很特殊的不清楚@@但我看過的g_ij的確都是正定的
03/15 02:44, 1F

03/15 03:54, , 2F

03/15 03:55, , 3F
Gramian matrix的determiant恰為該n個向量展出的
03/15 03:55, 3F

03/15 03:55, , 4F
平行多面體的體積的平方
03/15 03:55, 4F
文章代碼(AID): #1FOEGVlg (Math)
討論串 (同標題文章)
文章代碼(AID): #1FOEGVlg (Math)