[分析] PDE

看板Math作者 (下次再努力)時間14年前 (2012/02/13 00:57), 編輯推噓2(207)
留言9則, 3人參與, 最新討論串3/6 (看更多)
n 2 __ Let Ω in R be open. Show that if there exists a function u ε C ( Ω ) vanishing on (boundary)Ω for which the quotient 2 ∫ |▽u| Ω ---------- 2 ∫ u Ω reaches its infimum λ, then u is an eigenfunction for the eigenvalue λ, so that △u + λu = 0 in Ω. 上次那題已解決,謝謝幫忙的版友. 再一次麻煩各位,請問這題應該怎麼下手呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 115.43.192.87

02/13 06:54, , 1F
let ∫|u|^2=1, then inf[∫|▽u|^2] = λ
02/13 06:54, 1F

02/13 06:56, , 2F
=> inf [∫|▽u|^2 -λ] = inf [∫|▽u|^2 -λ∫u^2]
02/13 06:56, 2F

02/13 06:57, , 3F
let L[u] = ∫|▽u|^2 -λ∫u^2
02/13 06:57, 3F

02/13 07:00, , 4F
and vεC^∞ with compact support
02/13 07:00, 4F

02/13 07:03, , 5F
then d/dt(L[u+tv]) = 0 when t=0 (local minimal)
02/13 07:03, 5F

02/13 07:05, , 6F
=> ∫(-△u -λu)v = 0
02/13 07:05, 6F

02/13 07:05, , 7F
=> -△u -λu = 0
02/13 07:05, 7F

02/13 18:27, , 8F
謝謝!! 我有個疑問~為什麼要用 u+tv 來做??怎麼想的
02/13 18:27, 8F

02/13 18:50, , 9F
高等微積分的作法....
02/13 18:50, 9F
文章代碼(AID): #1FD-zrem (Math)
討論串 (同標題文章)
以下文章回應了本文
分析
0
2
完整討論串 (本文為第 3 之 6 篇):
分析
1
5
分析
1
5
分析
0
2
分析
2
9
分析
分析
文章代碼(AID): #1FD-zrem (Math)