Re: [代數] 函數的m次方等於m階乘
※ 引述《enunion (珍惜)》之銘言:
請問有那種函數滿足
m次方等於m階乘的嗎?
即
ζ^m = m!
ζ解出來會是什麼?
感謝~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.91.195
→
02/01 16:37,
02/01 16:37
推
02/01 16:37,
02/01 16:37
推
02/01 16:39,
02/01 16:39
→
02/01 16:40,
02/01 16:40
→
02/01 16:58,
02/01 16:58
推
02/01 19:39,
02/01 19:39
推
02/01 20:10,
02/01 20:10
可是這樣很奇怪
ζ一開始我們說它是常數
但如果算出來是(m!)^(1/m)
這樣他就是函數了
違反我們原先的假設
而且我發現ζ這個數有個跟e類似的性質:
(1)微分不變性
d(ζ^m)/dζ = m*ζ^(m-1) = m*(m-1)! = m! = ζ^m
(2)積分不變性
∫(ζ^m) dζ = ζ^(m+1)/(m+1) = (m+1)!/(m+1) = m! = ζ^m
好奇怪
我是在做(t+c)^n的Laplace 轉換遇到的
L{(t+c)^n} = ?
where c is a constant
and n is a real number ,not necessary to be a postive integer
還是有人知道這個轉換後應該是怎樣的?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.134.112
推
02/02 17:09, , 1F
02/02 17:09, 1F
→
02/02 17:10, , 2F
02/02 17:10, 2F
推
02/02 17:17, , 3F
02/02 17:17, 3F
→
02/02 17:17, , 4F
02/02 17:17, 4F
→
02/02 17:19, , 5F
02/02 17:19, 5F
→
02/02 17:24, , 6F
02/02 17:24, 6F
→
02/02 17:29, , 7F
02/02 17:29, 7F
→
02/02 17:29, , 8F
02/02 17:29, 8F
→
02/02 17:43, , 9F
02/02 17:43, 9F
→
02/02 17:45, , 10F
02/02 17:45, 10F
→
02/02 17:46, , 11F
02/02 17:46, 11F
→
02/02 18:33, , 12F
02/02 18:33, 12F
→
02/02 18:34, , 13F
02/02 18:34, 13F
→
02/02 18:34, , 14F
02/02 18:34, 14F
討論串 (同標題文章)
完整討論串 (本文為第 2 之 2 篇):
代數
4
7