Re: [機統] P(X=c)=I if and only if VAR(X)=0
※ 引述《touurtn (vv)》之銘言:
: 請問
: 在證到 P(|X-EX|<ε)=1
: 方法1:
: 有些書會寫:since ε is arbitrary, then P( X=EX )=1
: 方法2:
: 但我使用的課本(A Courese in Mathematical Statistics ,Roussas)
: 卻還要利用到 P(lim An) = lim p(An)這件事
: 老師的證明手法也是採用這樣,為什麼會分成這兩種呢?
Since P(|X-EX|<ε)=1 for ε>0, so it is true for ε=1/n>0,n=1,2,...
Let A_n={|X-EX|<1/n}, then P(A_n)=1 for all n=1,2,... by assumpion.
And obviously,{A_n} forms a decreasing sequence and A_n->{|X-EX|=0} as n->00
So by continuity of measure,
P(X=EX) = P(|X-EX|=0) = P(lim A_n) = P(∩A_n) = limP(A_n) = 1
n n n
In fact, if 0≦|X-EX|<ε is true for all ε>0,
then |X-EX|=0 in the sense of limit.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.119.246.32
推
11/25 18:04, , 1F
11/25 18:04, 1F
→
11/25 18:04, , 2F
11/25 18:04, 2F
→
11/25 18:06, , 3F
11/25 18:06, 3F
→
11/25 18:16, , 4F
11/25 18:16, 4F
→
11/25 18:17, , 5F
11/25 18:17, 5F
※ 編輯: THEJOY 來自: 140.119.246.32 (11/25 22:50)
→
11/25 22:51, , 6F
11/25 22:51, 6F
→
11/25 22:53, , 7F
11/25 22:53, 7F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):