Re: [微積] 改變積分順序
※ 引述《snaredrum (好聽木琴)》之銘言:
: ※ 引述《nourri (nourri)》之銘言:
: : 因為有圖所以放在這裡
: : http://ppt.cc/OgeJ
: : 其中dxdydz跟dxdzdy不知道要怎麼下手
: : 想請問一下要怎麼算
: : TA說consider writing this integral as the sum of two integrals
: : 可是還是想不出來
: : 謝謝
: 先說 dx dy dz...
: 要把這個積分 拆成兩個.. .
: 那個圖形的體積分 =
: 1 1 1-y
: 積分 積分 積分 f(x,y,z) dx dy dz
: 0 0 0
: 1 1 1
: - 積分 積分 積分 f(x,y,z) dx dy dz
: 0 0 根號(1-z)
不好意思 y的上下限 要改掉...是 0到 1- sqrt(1-z)
基本上 上限就是 y=1-x 只是把x換成 sqrt(1-z) 因為那個邊界 就是這個函數規範住.
: 第一個積分 代表三角柱..
: 由z=0 (0,0,0) (1,0,0) (0,1,0)三角形 平移向上 到 z=1 所圍起來的那塊 三角柱~~
: 第二個積分代表 曲面到上面蓋子 z=1 三角柱 圍起來 那塊體積~~
: 這個問題 難在 第一個就要dx時 dx 上下限難以判斷...
: 因為dx 的範圍 上半的是被 x^2=1-z 曲面規範住 下半是被 x=1-y 規範住
: 為了避免這問題 只好拆成兩個 所以就考慮 原本那要積分的體積範圍
: 拆成兩塊兩寫 就是 三角柱 減去 那個曲面(z=1-x^2)跟與三角柱圍成那的塊..
: dx dz dy 其實一樣 因為 dy dz 都是0 到 1的範圍 交換根本無所謂..
: 希望你看的懂 我再寫啥... XD
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 68.48.173.107
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):