Re: [分析] Cardinality、Compact

看板Math作者 (憶)時間12年前 (2011/10/18 23:35), 編輯推噓4(4032)
留言36則, 4人參與, 最新討論串2/3 (看更多)
因為都獲得大部分的結果所以找了這麼久之前的文章回XD 不過不保證對就是了( ̄艸 ̄) : 1. Let A be the set of all functions from (0,1) to |R,and : B be the set of all continuous funtions from (0,1) to |R. : (a) Show that there is no 1-1 correspondence between |R and A. : That is,|R and A do not have the same cardinlity. The cardinal number of S={f|f:X-->Y is a function} is |Y^X|=|Y|^|X| Hence the cardinal number of A is c^c=2^c>c,where c is the cardinal number of |R. 雖然這樣好像有點倒過來證明 不過我想這是最快速的想法XDDD : (b)Prove or disprove that there is a 1-1 correspondence between |R and B. 推文有提到 只要決定再Q(有理數)上的函數值就可以 所以整個的cardinal number 銳減到 N_0^N_0=2^{N_0}=c 因為Q是可數所以跟正整數的cardinal number一樣 所以有bijective的函數 : 2.Let W be a compact subset of |R^n and {Va} be an open cover of W. : Prove that there is an ε>0 such that for each subset E of W having : diameter less than ε, there is a V in {Va} containing E. 這個是著名的Lebesgue's Lemma(旁聽高微剛好聽到XD) 所選到的ε稱為Lebesgue number, 題目中用直徑 我證明用半徑 只要再縮小半徑就好了 Proof: Suppose the conclusion is false. Then for all r>0, there exists x∈W such that B(x;r) is not contained in V_a, for all a∈I, I is an index set. Choose r=1/k,k∈|N, and x_k∈W such that B(x_k,1/k) is not contained in any V_a , a∈I. Since the conclusion is still fails for W\{x_1}, (If it hold, the we can choose the minimun of radius which is a contradiction to our hypothesis.) hence,we may choose x_i≠x_j, for all i≠j. Hence {x_n} is a infinite set. Since W is cpt, the all the infinite set has a limit point in W, say x. Hence x∈V_a, for some a in I, and V_a is open, there exists ε>0 such that B(x;ε/2)⊆V_a. Finally, we claim: B(x_k;1/k)⊆B(x;ε)⊆V_a, for some k>>0, which is a contradiction and we are done. Since 1/k--->0, choose k>>0 such that 1/k<ε/2, and x_k∈B(x;ε/2). Given y∈B(x_k;1/k) |y-x|≦|y-x_k|+|x_k-x|≦1/k+ε/2<ε/2+ε/2=ε -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.159.236

10/18 23:37, , 1F
然後我一直認為2^{N_0}=c是連續統假設(  ̄ c ̄)y▂ξ
10/18 23:37, 1F

10/19 00:07, , 2F
(1) 如何證明 |Y^X|=|Y|^|X| ?
10/19 00:07, 2F

10/19 00:12, , 3F
2^{N_0}=c 不是連續統假設
10/19 00:12, 3F

10/19 00:14, , 4F
連續統假設是說N_0和c(N_1)沒有其他 Cardinal number
10/19 00:14, 4F

10/19 00:15, , 5F
SOGA
10/19 00:15, 5F

10/19 00:15, , 6F
所以有別的方法可以證明他囉?
10/19 00:15, 6F

10/19 00:21, , 7F
CH + AC => 2^{N_0}=c
10/19 00:21, 7F

10/19 00:23, , 8F
給P大 那好像是定義 Y^X是個符號
10/19 00:23, 8F

10/19 00:24, , 9F
等等我再找找QQ
10/19 00:24, 9F

10/19 00:27, , 10F
Cardinal exponentiation
10/19 00:27, 10F

10/19 00:27, , 11F
|Y^X|=|Y|^|X|
10/19 00:27, 11F

10/19 00:27, , 12F
|The set of all function from X to Y|=|Y|^|X|
10/19 00:27, 12F

10/19 00:40, , 13F
感謝P大的提示
10/19 00:40, 13F

10/19 14:18, , 14F
那為什麼 c^c = 2^c? 看起來應該是 c^c > 2^c
10/19 14:18, 14F

10/19 14:40, , 15F
接下來就得證明: c^c > 2^c 以及 2^c >, 然後
10/19 14:40, 15F

10/19 14:40, , 16F
再說明 c_1 > c_2 & c_2 > c_3 => c_1 > c_3 ...
10/19 14:40, 16F

10/19 15:04, , 17F
根據我的理解,N_1 (或者 c) = 2^N_0 可以說是定義
10/19 15:04, 17F

10/19 15:04, , 18F
我們只是證明了 2^N_0 > N_0 而已
10/19 15:04, 18F

10/19 15:05, , 19F
而一個要面對的問題就是 N_0, N_1 中間有沒有東西
10/19 15:05, 19F

10/19 15:06, , 20F
這就是連續統假說
10/19 15:06, 20F

10/19 15:07, , 21F
先是 Godel 證明了在 ZF 系統下無法否定連續統假說
10/19 15:07, 21F

10/19 15:08, , 22F
後來 Cohen 又證明了 ZF 系統下無法證明連續統假說
10/19 15:08, 22F

10/19 15:09, , 23F
於是接不接受連續統假說完全看我們想要怎樣的系統
10/19 15:09, 23F

10/19 15:11, , 24F
就像原先選擇公設是獨立於其他公設一樣
10/19 15:11, 24F

10/19 15:11, , 25F
而連續統假說則是即使有了選擇公設也還獨立於系統
10/19 15:11, 25F

10/19 15:13, , 26F
有些人不想接受選擇公設,但問題是少了選擇公設
10/19 15:13, 26F

10/19 15:13, , 27F
很多東西都無法證明或者很難證明
10/19 15:13, 27F

10/19 15:14, , 28F
所以現在絕大多數數學家都接受了選擇公設
10/19 15:14, 28F

10/19 15:15, , 29F
而連續統假說則非如此
10/19 15:15, 29F

10/19 15:25, , 30F
c^c=(2^N)^c=2^(Nc)=2^c
10/19 15:25, 30F

10/19 19:03, , 31F
感謝樓上幫忙 兩個cardinal number相乘的結果是比較
10/19 19:03, 31F

10/19 19:03, , 32F
大的那個
10/19 19:03, 32F

10/19 19:03, , 33F
然後cantor說2^c一定嚴格大於c
10/19 19:03, 33F

10/19 19:32, , 34F
感謝dogy,其實這篇我只是想要提供點想法而已XD
10/19 19:32, 34F

10/19 19:32, , 35F
感謝p大和dogy大這樣熱心:) 幫助我釐清很多事情
10/19 19:32, 35F

10/19 19:32, , 36F
也多看了很多文章
10/19 19:32, 36F
文章代碼(AID): #1EdPp3D6 (Math)
文章代碼(AID): #1EdPp3D6 (Math)