Re: [其他] extreme point證明
※ 引述《c96a111 (拉~阿~!)》之銘言:
: Prove that the extreme point of S={x | (x^t)x≦1}
: are the point on its boundary.
: 這題小弟我想好久了...
: 真的不知道該怎去證明端點在邊界上
: 希望有高手能幫忙一下
Given x \in S
i) x = 0
take y = [1 0 ... 0]^t, z = -y
then x = y/2 + z/2
hence x is not an extreme point of S
ii) x \in int(S), x≠0 i.e. (x^t)x < 1, x≠0
take y = x/|x|, z = 0
then x = |x|y + (1-|x|)z
hence x is not an extreme point of S (∵0 < |x| < 1)
iii) x \in bd(S) i.e. (x^t)x = 1
suppose that x is not an extreme point of S
__
then there is a segment in S passing through x, say yz
let u be the unit vector pointing inward to S along this segment
^^^^^^^^^^^^^^^^^^^^
this means that (u^t)x≦0
since x is the outward normal vector of S at x
then the segment may be parametrized as x + su, where s is a real number
because the segment is contained in S
so [(x + su)^t](x + su)≦1 <=> 0≦s≦-2(u^t)x
then y = x + au, z = x + bu, where 0≦a,b≦-2(u^t)x
and x = ry + (1-r)z = x + (ra + (1-r)b)u for some r
so r = b/(b-a)
since 0<r<1, we have b>0, b>a, a<0
but a<0 is impossible, which is a contradiction
it means that x is an extreme point
Combining i, ii and iii
we conclude that the extreme points of S = {x | (x^t)x≦1} are
the points on its boundary
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.46.14
推
10/15 16:37, , 1F
10/15 16:37, 1F
→
10/15 16:38, , 2F
10/15 16:38, 2F
推
10/15 16:56, , 3F
10/15 16:56, 3F
推
10/15 18:05, , 4F
10/15 18:05, 4F
→
10/15 18:07, , 5F
10/15 18:07, 5F
→
10/15 18:07, , 6F
10/15 18:07, 6F
→
10/15 18:15, , 7F
10/15 18:15, 7F
推
10/15 18:19, , 8F
10/15 18:19, 8F
推
10/15 18:24, , 9F
10/15 18:24, 9F
推
10/15 18:52, , 10F
10/15 18:52, 10F
推
10/15 18:55, , 11F
10/15 18:55, 11F
→
10/15 19:04, , 12F
10/15 19:04, 12F
→
10/15 19:05, , 13F
10/15 19:05, 13F
→
10/15 22:03, , 14F
10/15 22:03, 14F
→
10/15 22:44, , 15F
10/15 22:44, 15F
推
10/15 22:45, , 16F
10/15 22:45, 16F
→
10/15 22:56, , 17F
10/15 22:56, 17F
→
10/16 00:08, , 18F
10/16 00:08, 18F
※ 編輯: Vulpix 來自: 111.248.46.14 (10/16 00:23)
→
10/16 00:24, , 19F
10/16 00:24, 19F
→
10/16 00:25, , 20F
10/16 00:25, 20F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):