Re: [工數] 一題ODE
※ 引述《handsboy (夠夠拋兒瑞久)》之銘言:
: dy 3 2 -1
: ---- = x (y-x) + x y , x>0
: dx
: 想不出來-.-
: 有人會解嗎
此為Riccati ODE 按照解題步驟慢慢算即可..
1. y=x為一特解 令y=x+u 帶入ODE (會變成Bernoulli ODE)
帶入得
1+u'=x^3*u^2 + (x+u)/x
u'=x^3*u^2 + u/x (有合併對象 用觀察法較易..)
u^-2 du = (1/x)(1/u)dx + x^3dx
d(1/u) + (1/x)(1/u)dx = - x^3dx , I= exp(lnx)=x
d(x/u) = -x^4dx , xu = (-x^5+c)/5
u = 5x/(c-x^5) , y = x+u = x + 5x/(c-x^5)
===============另解====================
令y-x=z 整理得
z'=x^3*z^2 + z/x
xdz-zdx = x^4*z^2 dx
d(zx^-1)/(x^-2) = x^4*z^2 dx
1/(x^-2*z^2) = x^4 dx ,積分得
-1/z*x^-1 = (x^5+c)/5
z = -5x/(x^5+c) , y = x - 5x/(x^5+c)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.122.118
推
08/20 18:11, , 1F
08/20 18:11, 1F
→
08/20 18:12, , 2F
08/20 18:12, 2F
→
08/20 18:12, , 3F
08/20 18:12, 3F
→
08/20 18:14, , 4F
08/20 18:14, 4F
推
08/20 18:17, , 5F
08/20 18:17, 5F
→
08/20 18:19, , 6F
08/20 18:19, 6F
→
08/20 18:20, , 7F
08/20 18:20, 7F
※ 編輯: doublewhi 來自: 140.113.122.118 (08/20 18:27)
→
08/20 18:23, , 8F
08/20 18:23, 8F
→
08/20 18:23, , 9F
08/20 18:23, 9F
→
08/20 18:28, , 10F
08/20 18:28, 10F
※ 編輯: doublewhi 來自: 140.113.122.118 (08/20 18:28)
推
08/20 19:21, , 11F
08/20 19:21, 11F
推
08/20 22:21, , 12F
08/20 22:21, 12F
→
08/20 22:23, , 13F
08/20 22:23, 13F
→
08/20 22:24, , 14F
08/20 22:24, 14F
→
08/20 23:55, , 15F
08/20 23:55, 15F
推
08/21 14:09, , 16F
08/21 14:09, 16F
→
08/21 14:10, , 17F
08/21 14:10, 17F
→
08/21 14:11, , 18F
08/21 14:11, 18F
討論串 (同標題文章)