Re: [微積] 微分問題
※ 引述《sosick (錢錢)》之銘言:
: f(x)=(x^2-3x+5)^(-1)
: f'''(1)=?
: 之前上課老師有教到一提跟這題很類似
Let u=x-1
x^2-3x+5=(u+1)^2-3(u+1)+5=u^2-u+3
g(u)=1/(u^2-u+3)=(1/3)/[1-(u/3-u^2/3)]
=(1/3)[1+(u/3-u^2/3)+(u/3-u^2/3)^2+(u/3-u^2/3)^3+....]
=(1/3)[a+bu+cu^2+du^3+...]
d=-2/9+1/27=-5/27
f(x)=g(x-1)
f'''(1)=g'''(0)=2d=-10/27
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.96.131
推
06/16 23:08, , 1F
06/16 23:08, 1F
→
06/16 23:11, , 2F
06/16 23:11, 2F
1/(1-x)=1+x+x^2+x^3+..... whenever |x|<1
推
06/16 23:22, , 3F
06/16 23:22, 3F
Sorry, I cannot tell you because it is too obvious.
※ 編輯: JohnMash 來自: 112.104.96.131 (06/16 23:28)
推
06/16 23:28, , 4F
06/16 23:28, 4F
→
06/16 23:29, , 5F
06/16 23:29, 5F
討論串 (同標題文章)