Re: [中學] 100松山工農教師甄選

看板Math作者 (天佑台灣)時間14年前 (2011/06/14 09:43), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/7 (看更多)
: 4. : n n n : 1+ √(1^n + 2^n) + √(2^n + 3^n) + .....+ √(m-1)^n + m^n) : lim lim ------------------------------------------------------- : m->infinity n->infinity m^2 少講一個 第一項是1 而且每一項是n次方不是平方@@ 我的作法是用夾擠定理 原式 n n n 1 + √(1^n + 2^n) + √(2^n + 3^n) + .....+ √(m-1)^n+m^n ------------------------------------------------------ m^2 n n n 1 + √(2^n+ 2^n) + √(3^n + 3^n) + .....+ √m^n+m^n < ------------------------------------------------------ m^2 n 1+ √2(2+3+...+m) =---------------------- m^2 n 當n->infinity時, √2-->1 m(1+m)/2 m^2+m 1 原式就變成lim ------------- =lim ----------= --- m->infinity m^2 m-->infinity 2* m^2 2 另一邊的也以同樣的手法也可以得到1/2 如有錯誤地方 請大家指正 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.85.241.208

06/14 10:18, , 1F
感謝。
06/14 10:18, 1F
文章代碼(AID): #1DzhpBCk (Math)
討論串 (同標題文章)
文章代碼(AID): #1DzhpBCk (Math)