Re: [線代] orthogonal complement
※ 引述《mqazz1 (無法顯示)》之銘言:
: let S be the subspace of R^3 spanned by the vectors x = (x1, x2, x3)^T
: and y = (y1, y2, y3)^T
: [x1 x2 x3]
: let A = [y1 y2 y3]
: ⊥
: show that S = N(A)
: 請問有人知道這個該怎麼證嗎?
: 謝謝!!
(x1, x2, x3)^T and (y1, y2, y3)^T 屬於S
⊥
If (a1,a2,a3)屬於S <=> (a1,a2,a3)˙(x1, x2, x3)^T=0 and
(a1,a2,a3)˙(y1, y2, y3)^T=0
<=> (a1,a2,a3)屬於N(A)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.224.182.97
推
06/05 18:57, , 1F
06/05 18:57, 1F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 4 篇):