Re: [微積] 請教兩題Improper Integral的證明

看板Math作者 (最後的演武)時間14年前 (2011/05/27 13:31), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《bestscott (新希望)》之銘言: : f(x)=1 在區間[1,1+1/2],[2,2+1/4],[3,3+1/8],...,and f(x)=0 elsewhere : (1)show that : ∞ : ∫ f(x)dx converges(and is equal to 1) although f(x)不趨近於0,x→∞. : 0 ∞ ∞ n+(1/2^n) ∞ Since ∫ f(x)dx = Σ ∫ 1 dx = Σ 1/2^n = 1 0 n=1 n n=1 But lim f(x) does not exist. x->∞ (Take x = n and x = n + 1/(n-1) to get the differente limit.) : (2) ∞ : Modify f to make an example of a function g such that∫0 g(x)dx converges : although g(x) does not remain bounded as x→∞. : 謝謝!!! QQ Consider ┌ n, if x in [n,n+(1/2^n)], n = 1,2,3,... g(x) = ┴ 0, elsewhere Obviously, g(x) is unbounded as x->∞ ∞ ∞ n+(1/2^n) ∞ ∫ g(x)dx = Σ ∫ n dx = Σ n/2^n 0 n=1 n n=1 Cleraly, this series converges by root test, hence, the integral converge. And the value of the series is easy to calculate, try yourself! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.202.118
文章代碼(AID): #1DtpSmxt (Math)
文章代碼(AID): #1DtpSmxt (Math)