Re: [複變] Laurent series

看板Math作者 (佐佐木信二)時間14年前 (2011/05/21 00:47), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《womack79 (糖做的老虎)》之銘言: : use laurent series to expand f(z) = 1/(e^z-z-1) at z = 0 : and find converge radius : 麻煩指點一下hint 感謝 1 1 f(z) = ------------ = ------------------------------------- z z^2 z^3 e - z - 1 1 + z + ----- + ----- + ... - z - 1 2 6 1 = ----------------------------- z^2 z^3 z^4 ----- + ----- + ----- + ... 2 6 24 2 1 = ----- * ------------------------------- z^2 z z^4 z^5 1 + --- + ----- + ----- + ... 3 12 60 2 z z^2 z^3 z^4 = ----- * (1 - --- + ----- + ----- - ------ - ...)(長除法) z^2 3 36 540 6480 2 2 1 z z^2 = ----- - ---- + ---- + ----- - ------ - ...... z^2 3z 18 270 3240 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.133.34

05/21 00:50, , 1F
謝謝!!
05/21 00:50, 1F
文章代碼(AID): #1DrfiHdk (Math)
討論串 (同標題文章)
文章代碼(AID): #1DrfiHdk (Math)