[機統] 變異數(方差)為零的問題

看板Math作者 (...)時間15年前 (2011/04/10 13:31), 編輯推噓0(0015)
留言15則, 3人參與, 最新討論串1/1
前輩們好,今天又有搞不清楚的問題想請教各位了。 2 在隨機變數 X 的 μ (期望值) 與 σ (變異數),在連續的情況下,分別為: X X ∞ μ = E[X] = ∫ x f (x)dx X -∞ X 2 2 ∞ 2 σ = E[ (X-μ) ] = ∫ (x-μ) f (x) dx X X -∞ X X 書上寫說: 2 一個特殊情況是變異數σ = 0 X 如果 X 為連續,則 f(x) 必在某區間 (a,b)上有 f(x) > 0 2 但在此區間上不可能恆有 (x-μ) = 0 X 因而知道任何連續隨機變數的變異數不可能為零。 ================ 我的問題是: 1. 「如果 X 為連續,則 f(x) 必在某區間 (a,b)上有 f(x) > 0」 f(x)dx = F'(X) f(x) 不是恆 > 0嗎? 有 f(x) < 0 的情況發生嗎? 2 2. 「但在此區間上不可能恆有 (x-μ) = 0」 X 為什麼在這個(a,b)區間上不會有任何一個 x 剛好等於 μ ? X 是因為連續區間的數有很多個,x 剛好等於 μ 是不可能的嗎?或者是其他原因? X 初學機率,有很多地方搞不清楚 請各位前輩們多多包含指點迷津,再次感謝各位前輩們。<(_ _)> -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.125.169.71

04/10 13:33, , 1F
f(x) 可以等於 0.
04/10 13:33, 1F

04/10 13:35, , 2F
其沒有說不能有 x 剛好等於μ. 但, x 不會恆等於μ.
04/10 13:35, 2F

04/10 13:41, , 3F
謝謝yhliu前輩,但是計算出來的μ的值,
04/10 13:41, 3F

04/10 13:41, , 4F
一定不會落在(a,b)區間內嗎?
04/10 13:41, 4F

04/10 13:41, , 5F
如果μ會落在(a,b)區間內,那x也在(a,b)區間內,
04/10 13:41, 5F

04/10 13:42, , 6F
在積分的過程中,這樣x=μ不就會發生嗎?
04/10 13:42, 6F
※ 編輯: andy2007 來自: 140.125.169.71 (04/10 13:42)

04/10 13:44, , 7F
"恆"是指對任何x都成立,你說的是存在一個x
04/10 13:44, 7F

04/10 13:49, , 8F
原來「但在此區間上不可能恆有 (x-μ)^2 = 0」是說
04/10 13:49, 8F

04/10 13:50, , 9F
在此(a,b)區間會有 x=μ,但不會「任何的x都等於μ」
04/10 13:50, 9F

04/10 13:50, , 10F
我的國文實在太遜了Orz,謝謝ricestone和yhliu前輩。
04/10 13:50, 10F

04/10 13:51, , 11F
它沒有對會不會有x=μ表達任何意見
04/10 13:51, 11F

04/10 13:55, , 12F
喔喔,書上說「不可能恆有 (x-μ)^2 = 0」
04/10 13:55, 12F

04/10 13:55, , 13F
也就是不會「任何的x都等於μ」,
04/10 13:55, 13F

04/10 13:55, , 14F
但沒有說在此(a,b)區間「會有 x=μ」
04/10 13:55, 14F

04/10 13:56, , 15F
我又畫蛇添足了Orz
04/10 13:56, 15F
文章代碼(AID): #1DeK2cXh (Math)