Re: [中學]
※ 引述《robertshih (施抄)》之銘言:
: ※ 引述《kk5577238 (萬惡根源 不知名KKK)》之銘言:
: : 1.在sin10 cos10 tan10 cot10 sec10 csc10中 最小為? 最大為?
: sin(10) = -0.54402111
: cos(10) = -0.83907153
: tan(10) = 0.64836083
: cot(10) = 1.54235105 <- 最大
: sec(10) = -1.19179351
: csc(10) = -1.83816396 <- 最小
: : 2.已知4sin平方⊙-4sin⊙-3=0 求sin⊙ ⊙: ci tr
: : 3.Y=2sin[3x-pi]-5 求最大值跟最小值
: Max = -3, min = -7
: : 4.若PI/6<等於⊙<等於2PI/3 求Y=3sin⊙-1的函數值範圍
: : 5.求Y=SIN平方X+2SIN+3最大值跟最小值
: : 麻煩解答時加一下計算過程....謝謝
1.
10 約 = 570度 同界轉為210度
以下均為角度
=> sin210 = -sin30
sin,cos, 在[-1,1]間
cos210 = -cos30
tan210 = tan30 = sin30/cos30,sin30 = cos60,餘X角度越大值越小 所以0<tan30<1
cot210 = 1/tan30
sec210 = -1/cos30
csc210 = -1/sin30
i.e 最大值最小值 必再cot sec csc中
且cos sin在第一象限值為正 所以 最大值 cot #
sin30 = cos60,餘X角度越大值越小
=> cos60 < cos30 => 1/cos60 > 1/cos30 => -1/cos60 < -1/cos30
=> -1/sin30 < -1/cos30
=> csc210 < sec210
所以最小值 csc #
3.
y = asin(kθ+φ)+b
基本的三角圖形函數
a會始整個圖形上下拉大縮小
b則是把整個函數對應出來的值提升或降低
k影響著圖形的周期
φ則左右移動
所以會影響最大值最小值 只有a b
原題=> y = 2sin(3x-pi)-5
y = sin(3x-pi) => max 1 min -1
y = 2sin(3x-pi) => max 2 min -2
y = 2sin(3x-pi)-5 => max -3 min -7#
其餘 上篇
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.122.203.104
討論串 (同標題文章)