Re: [線代] eigenvalue一題...

看板Math作者 (車干)時間15年前 (2011/03/02 01:54), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串3/3 (看更多)
※ 引述《xx52002 (冰清影)》之銘言: : http://xx52002.myweb.hinet.net/aaa.png
: 麻煩各位了O_Q Clearly, T(T(A)) = A = I(A), I is the identity map. Let f(x) = x^2-1, f(T) = 0. Hence,the mini.poly p of T , p|x^2-1 = (x-1)(x+1). So, p = x^2-1 or x-1 or x+1. It's easy to see that p ≠ x-1 or x + 1 (otherwise, T = I or T = -I) Consequencely, The eigenvalue of T is 1 and -1. p = (x-1)(x+1), so T is diagonalizable. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.175.194 ※ 編輯: VFresh 來自: 111.251.175.194 (03/02 01:55)

03/02 02:07, , 1F
這篇技巧的多
03/02 02:07, 1F

03/03 01:28, , 2F
感謝^^
03/03 01:28, 2F
文章代碼(AID): #1DRJA-qc (Math)
文章代碼(AID): #1DRJA-qc (Math)