Re: [分析] closed set

看板Math作者 (銀色轟炸機)時間15年前 (2011/02/10 02:31), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《Madroach (∞)》之銘言: : A and B are nonempty closed subset in R. : Define A+B = {a+b | a in A, b in B} : A*B = { ab | a in A, b in B}. : Prove or disprove A+B, A*B are closed. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.248.9.101

02/09 20:28,
如果考慮連續函數f(x,y)=x+y 然後假設A+B是range上的
02/09 20:28

02/09 20:28,
一個子集這樣呢?
02/09 20:28

02/09 20:50,
A=正整數 B=-n-1/n n=2,3,4......
02/09 20:50

02/09 20:51,
A+B不是closed,因為有1/2,1/3,1/4......
02/09 20:51

02/09 21:17,
謝謝!
02/09 21:17
  ss大大提供的集合沒錯, 可是原因好像有點怪, 應該是這樣:   For all positive integer n ≧ 2, we see that n belong A and 1 1 -1 –n–── belong B, so n + (–n–──) = ── are in A + B for all n ≧ 2. n n n 1 But lim ── = 0 does not belong A + B. ( A + B has no integers.) n→∞ n   至於 A ×B = { ab | a in A, b in B.} 是不是 closed 呢? 答案不是. 反例如下: 1 +   Set A = Z, and B = {──|n is in Z .} ∪ {0}. We have already known n that both A and B are closed in |R. But A ×B = q __ {──|p, q are both in Z, p ≠0.} = Q is not closed in |R due to p|R. (題目來源: 台灣聯合大學系統 99學年度碩士班考題 高等微積分 #2) -- : 數學到底有什麼技巧呢? 靈性, 信念, 經驗 : 想不出來做不出來是真的不會嗎? 我覺得 這是緣分的問題 (茶) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 編輯: sato186 來自: 114.33.209.112 (02/10 04:08)

02/10 08:34, , 1F
謝謝!
02/10 08:34, 1F
文章代碼(AID): #1DKjrind (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
分析
1
5
完整討論串 (本文為第 2 之 2 篇):
分析
1
5
文章代碼(AID): #1DKjrind (Math)