[分析] 多變函數的可微性
(x^2)(y^3)
f(x,y) = ------------- , if (x,y)≠(0,0)
x^4 + y^4
= 0 , if (x,y)=(0,0)
Is f differentiable at (0,0)?
我的想法有
1.若f不可微則f不連續,因此我想設法找出兩路徑使得f沿著路徑逼出來的值不唯一
不過乍看之下這方法好像看不出f是不連續的
2.假設f可微,則total derivative T_0(u)跟方向導數f'(0;u)會一樣
f(0+u)-f(0)-f'(0;u)
以此去出發去看極限lim --------------------- 會不會不等於0
u→0 ∥u∥
若極限不等於0則矛盾,進而可以推得f不可微
不過試了兩個direction發現極限都等於0,所以好像又不是從這點去看
有請板友能再給我指點指點@@ 感謝!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.0.100
推
02/02 01:53, , 1F
02/02 01:53, 1F
→
02/02 01:54, , 2F
02/02 01:54, 2F
→
02/02 01:55, , 3F
02/02 01:55, 3F
→
02/02 01:56, , 4F
02/02 01:56, 4F
→
02/02 01:56, , 5F
02/02 01:56, 5F
→
02/02 01:56, , 6F
02/02 01:56, 6F
→
02/02 01:57, , 7F
02/02 01:57, 7F
→
02/02 01:58, , 8F
02/02 01:58, 8F
→
02/02 01:59, , 9F
02/02 01:59, 9F
→
02/02 01:59, , 10F
02/02 01:59, 10F
→
02/02 01:59, , 11F
02/02 01:59, 11F
→
02/02 02:00, , 12F
02/02 02:00, 12F
→
02/02 02:00, , 13F
02/02 02:00, 13F
→
02/02 02:02, , 14F
02/02 02:02, 14F
→
02/02 02:03, , 15F
02/02 02:03, 15F
→
02/02 02:04, , 16F
02/02 02:04, 16F
→
02/02 02:05, , 17F
02/02 02:05, 17F
→
02/02 02:06, , 18F
02/02 02:06, 18F
→
02/02 02:07, , 19F
02/02 02:07, 19F
→
02/02 02:18, , 20F
02/02 02:18, 20F
→
02/02 02:22, , 21F
02/02 02:22, 21F
→
02/02 02:23, , 22F
02/02 02:23, 22F
→
02/02 02:24, , 23F
02/02 02:24, 23F
→
02/02 02:25, , 24F
02/02 02:25, 24F
→
02/02 02:26, , 25F
02/02 02:26, 25F
→
02/02 02:27, , 26F
02/02 02:27, 26F
→
02/02 02:28, , 27F
02/02 02:28, 27F
→
02/02 02:29, , 28F
02/02 02:29, 28F
→
02/02 02:31, , 29F
02/02 02:31, 29F
→
02/02 02:31, , 30F
02/02 02:31, 30F
→
02/02 02:33, , 31F
02/02 02:33, 31F
→
02/02 02:33, , 32F
02/02 02:33, 32F
→
02/02 02:34, , 33F
02/02 02:34, 33F
→
02/02 02:34, , 34F
02/02 02:34, 34F
→
02/02 02:35, , 35F
02/02 02:35, 35F
→
02/02 02:36, , 36F
02/02 02:36, 36F
→
02/02 02:38, , 37F
02/02 02:38, 37F
→
02/02 02:38, , 38F
02/02 02:38, 38F
→
02/02 02:38, , 39F
02/02 02:38, 39F
→
02/02 02:40, , 40F
02/02 02:40, 40F
討論串 (同標題文章)