Re: [代數] 跟 Subgroup 子群有關的問題
※ 引述《superconan (超級柯南)》之銘言:
: 1. 設 H 為 群G 的子群,
: 證明:For all a, b 屬於 G , Ha = Hb 或 Ha∩Hb = 空集合 中必恰有一成立。
: 2. 設 H 是 群 ( G,。 ) 的有限集合,且 H 在 "。" 運算之下滿足封閉性,
: 證明:H 為 G 的子群。
: 第一題不知道該怎麼證,麻煩高手解說!
: 第二題我在想,是不是只要證 For all a屬於H , a^(-1) 也屬於 H 即可?!
: 先謝謝可以為我解惑的高手!!!
希望沒錯
1.
(1) if a = b , it is clearly that Ha = Hb
(2) if a ≠ b
(a) a,b belong H : Ha = H = Hb
(b) a belong H , b belong G\H : claim Ha∩Hb = 空集合
assume not. let x belong Ha∩Hb
then x belong Ha(=H) and x belong Hb
exist h1 belong H s.t. h1 = x and
h2 belong H s.t. (h2)b = x
then we have h1 = x = (h2)b
since H is subgroup , b = (h2)^(-1) (h1) ,which belong H →←
Thus Ha∩Hb = 空集合
(c) a,b belong G\H : claim Ha∩Hb = 空集合
assume not. let x belong Ha∩Hb
then x belong Ha and x belong Hb
exist h1 belong H s.t. (h1)a = x and
h2 belong H s.t. (h2)b = x
then we have h1(a) = x = (h2)b
since G is subgroup , h1 = (h2) b a^(-1)
which means b a^(-1) belong H , b,a belong H →←
Thus Ha∩Hb = 空集合
2.
Let a belong H , since H is closedness
a^2 belong H , a^3 belong H , ... , a^n belong H , ...
but H is finite , then exist m > 0 s.t. a^m = e
thus H = <a> ← cyclic group is subgroup of G
H is a subgroup of G
--
我可以為兄弟兩肋插刀,
但我可以為女人插兄弟兩刀。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.90.84
※ 編輯: sm008150204 來自: 140.113.90.84 (01/26 11:14)
推
01/26 17:49, , 1F
01/26 17:49, 1F
→
01/27 04:56, , 2F
01/27 04:56, 2F
→
01/27 04:57, , 3F
01/27 04:57, 3F
→
01/27 04:58, , 4F
01/27 04:58, 4F
→
01/27 12:08, , 5F
01/27 12:08, 5F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):