[機統] 關於期望值
Question:
A fair die is rolled repeatedly.
Let X be the number of rolls needed to obtaina 5
and Y the number of rolls needed to obtain a 6.
Calculate E(X|Y = 2).
下面是他給的解答
Solution:
X follows a geometric distribution with p = 1/6.
Y = 2 implies the first roll is not a 6 and the second roll is a 6.
This means a 5 is obtained for the first time on the first roll
(probability = 20%)
or a 5 is obtained for the first time on the third or later roll
(probability = 80%).
E(X|X>=3) = 1/p + 2 = 6+2 = 8, so E(X|Y=2) = .2(1) + .8(8) = 6.6
我機率沒學好,英文也很糟,所以看不懂>"<
我的疑問是...
0.2是怎麼來的??他所代表的意思是P(X=1|Y=2)??
(是因為第一次擲到的可能只剩下點數1~5,所以是1/5?)
為什麼不是(1/5)*(1/6).......我知道我哪裡想錯了
P(X=1|Y=2)=(1/6)*(1/6)/(5/6)*(1/6)=1/5
E(X|X>=3) = 1/p + 2 = 6+2 = 8
﹋﹋﹋﹌﹌﹌﹋﹋﹋﹋這地方不懂
E(X|Y=2) = .2(1) + .8(8) = 6.6
拜託解答一下,謝謝!!!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.227.138.102
→
01/23 13:06, , 1F
01/23 13:06, 1F
→
01/23 13:06, , 2F
01/23 13:06, 2F
→
01/23 13:07, , 3F
01/23 13:07, 3F
→
01/23 13:08, , 4F
01/23 13:08, 4F
→
01/23 13:09, , 5F
01/23 13:09, 5F
※ 編輯: sky428 來自: 61.227.138.102 (01/23 14:25)
→
01/23 14:30, , 6F
01/23 14:30, 6F
→
01/23 18:33, , 7F
01/23 18:33, 7F
→
01/23 18:34, , 8F
01/23 18:34, 8F
→
01/23 20:15, , 9F
01/23 20:15, 9F
討論串 (同標題文章)