Re: [分析] Royden的習題

看板Math作者時間15年前 (2011/01/03 09:10), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《wyob (Go Dolphins)》之銘言: : For each of the two functions f on [1,∞) defind below,show that n : lim ∫f : n→∞ 1 : exists while f is not integrable over [1,∞).Does this constradict the : continuity of integrable? : (i) Define f(x)=[(-1)^n]/n,for n≦x<n+1. Note that the function is equal to 1/(2n) on [2n,2n+1) and equal to -1/(2n+1) on [2n+1,2n+2) n ∫f = -1(2-1) + 1/2(3-2) + ... = -1 + 1/2 - 1/3 +- ... + (-1)^(n-1)/(n-1) 1 lim ∫f = lim -1 + 1/2 - 1/3 +- ...+ (-1)^(n-1)/(n-1)+ .... this sequence is conv. by integral test (高微) But ∫f is Lesbesgue integral iff ∫|f| < ∞ and ∫|f| = 1 + 1/2 + 1/3 + ... + 1/n + ... is div. 第二題的討論方法差不太多~ 可以自己試試看~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.25.188 ※ 編輯: yutzu903 來自: 140.113.25.188 (01/03 09:12)
文章代碼(AID): #1D8I8G-D (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #1D8I8G-D (Math)