Re: [分析] 初微(60)

看板Math作者 (>//////<)時間20年前 (2005/08/21 09:38), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串3/3 (看更多)
※ 引述《Dirichlet ( )》之銘言: : ※ 引述《plover (>//////<)》之銘言: : : If Σa_n converges with a_n > 0 for all n, and {a_n} is a : : decreasing sequence, show that n a_n → 0 as n → +∞. : By assumption => for any ε>0, there exists an integer N>0 s.t. n ≧ N : we have a_(n+1) + ... + a_(n+n) < ε/2 : {a_n} is a decreasing seq. => n[a_(2n)] < a_(n+1) + ... + a_(n+n) < ε/2 : Hence 2n[a_(2n)] < ε whenever n ≧ N : Similarly, a_(n+1) + ... + a_(n+n+1) < ε/2 whenever n ≧ N' for some N' : then (n+1)a_(2n+1) < a_(n+1) + ... + a_(n+n+1) < ε/2 : so (2n+1)a_(2n+1) < (2n+2)a_(2n+1) < ε : Hence n(a_n) < ε whenever n ≧ max{N,N'} 這結論可以推出 Σ1/n 是發散的. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142

05/05 22:50, , 1F
好推論,這種sense好像很難培養……
05/05 22:50, 1F
文章代碼(AID): #131zi5dX (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 3 之 3 篇):
文章代碼(AID): #131zi5dX (Math)