Re: [分析] 初微(59)

看板Math作者 (>//////<)時間20年前 (2005/08/21 09:30), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/4 (看更多)
※ 引述《Dirichlet ( )》之銘言: : ※ 引述《plover (>//////<)》之銘言: : : Show that the convergence of Σ a_n, where a_n > 0 for all n : : implies the convergence of Σ{(a_n)^(1/2)}/n. : [(a_n)^(1/2) - 1/n]^2 = a_n + 1/n^2 - 2[(a_n)^(1/2)]/n ≧ 0 : a_n + 1/n^2 ≧ 2[(a_n)^(1/2)]/n : By assumption, the fact Σ1/n^2 conv. and Comparison test : we know Σ{(a_n)^(1/2)}/n conv. 如果題目「Σ{(a_n)^(1/2)}/n」改成「Σ{(a_n)^(1/2)} n^{-p} for real p」, 那麼 Σ{(a_n)^(1/2)} n^{-p} 的斂散性又是如何? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142
文章代碼(AID): #131zavTt (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
以下文章回應了本文
完整討論串 (本文為第 3 之 4 篇):
文章代碼(AID): #131zavTt (Math)