Re: [分析] 初微(19)

看板Math作者 (asdfghjk)時間20年前 (2005/07/16 21:36), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《PttFund (批踢踢基金)》之銘言: : Using (1+1/n)^n → e as n→∞ to show that : (1+1/x)^x → e as x→+∞, and : (1+1/x)^x → e as x→-∞, : where n in N and x in R. let f(x) = (1+1/x)^x f'(x) = (1+1/x)^x [ln(1+1/x) - 1/(x+1)] > 0, for x > 0 ==> f(x) is strictly increasing for any x > 0, there is n_x belongs to |N such that n_x <= x < n_x + 1 ==> (1+1/n_x)^n_x <= (1+1/x)^x < (1+1/(n_x+1))^(n_x+1) so (1+1/x)^x → e as x→+∞ for x negative, let y = -x (1+1/x)^x = (1+1/(y-1))^y = (1+1/(y-1))^(y-1)*(1+1/(y-1)) apply the proof above (1+1/x)^x → e as x→-∞ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.160.37.84
文章代碼(AID): #12sGrwCh (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #12sGrwCh (Math)