Re: [分析] 初微(16)

看板Math作者 (entangle)時間20年前 (2005/07/16 12:00), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《PttFund (批踢踢基金)》之銘言: : Let p, q > 1 with 1/p + 1/q = 1. Show that : ab ≦ a^p/p + b^q/q : where a and b are nonnegative. : Note: 這個就是 Holder inequality, 然後請不要用 Young's inequality : 來證明. suppose one of a,b, says a, is not 1. then b=a^x for some x. a^(x+1) ≦ a^p/p + a^qx/q 1 ≦ a^(p-1-x)/p + a^((q-1)x-1)/q =: f(x) then f(x) >0 for x<<0. now, f'(x)=log a ( -a^(p-1-x)/p + (q-1)a^((q-1)x-1)/q) f'=0, iff (q-1)a^(qx-p)/q=1/p, ie a^(qx-p)=q/(q-1)p=1 ie. x=p/q. but f(p/q)=1/p+1/q=1 therefore, f(x) >= 1, for all x, and the inequality follows. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.138.37.100
文章代碼(AID): #12s8PnlQ (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 3 篇):
文章代碼(AID): #12s8PnlQ (Math)