Re: [閒聊] Biconnected Components

看板Marginalman作者 (廢文十傑 九席 香草醬油)時間9年前 (2017/01/09 01:28), 編輯推噓1(102)
留言3則, 1人參與, 最新討論串3/10 (看更多)
※ 引述《weichipedia (阿克西斯教小埋★騎士)》之銘言: : ※ 引述《ILoveElsa (廢文十傑 九席 香草醬油)》之銘言: : : In graph theory, a biconnected component (also known as a block or : : 2-connected component) is a maximal biconnected subgraph. Any connected graph : : decomposes into a tree of biconnected components called the block-cut tree of : : the graph. The blocks are attached to each other at shared vertices called : : cut vertices or articulation points. Specifically, a cut vertex is any vertex : : whose removal increases the number of connected components. : 上述的理論(按:原因自由行為)大家都耳熟能詳,但大部分的國內文獻都沒 : 有進一步說明這些理論應該如何落實在案例審查的架構中。以下,我們就以故意 : 之原因自由行為類型為例,說明上開理論各自應該在整個審查流程中的哪個環節 : 出場。 : 首先,不管採取何種立場,都應該要從時間在後的結果行為開始審查,也就 : 是要從無責任能力的瑕疵狀態下所違犯的行為(如:持刀砍人)切入。審查到罪責 : 階層時,便要處理行為人於結果行為時欠缺責任能力的問題。在這裡要先確認, : 行為人是否在具有完全責任能力的階段,自行招致責任障礙狀態的發生。確認涉 : 及原因自由行為的案例後,才會進入可罰性的討論。接著就要介紹各種不同主張 : (例外模式、構成要件模式),並且附具理由地選擇其中一種立場繼續推演。詳言 : 之,如果要採取例外模式,便要接著檢視該模式對於刑法第 19 條第 3 項所提 : 出的前提要件是否存在以決定是否應將該不法行為例外地歸責於行為人。如果形 : 成例外的條件並未成就,那麼審查就應該結束,也就是得出「因欠缺責任能力而 : 不構成該罪名」的結論。 : 與此相對,若是選擇採取構成要件模式,雖然在這裡同樣也是因欠缺罪責而 : 得出該不法行為不成立犯罪的結論,但接著就必須要轉而針對前階段的行為 (如: : 把自己灌醉或是施打毒品的行為)重開標題進行另一個新的審查。新審查所針對 : 的客體則是「招致責任障礙狀態的行為」。這裡特別要注意到,在審查主觀構成 : 要件時,必須特別檢視是否存有所謂的 「雙重故意」( Doppelvorsatz )。如果 : 欠缺,那麼故意罪名的審查便應結束,續而展開過失罪名的審查。 Minimum spanning tree A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible. More generally, any undirected graph (not necessarily connected) has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components. There are quite a few use cases for minimum spanning trees. One example would be a telecommunications company which is trying to lay out cables in new neighborhood. If it is constrained to bury the cable only along certain paths (e.g. along roads), then there would be a graph representing which points are connected by those paths. Some of those paths might be more expensive, because they are longer, or require the cable to be buried deeper; these paths would be represented by edges with larger weights. Currency is an acceptable unit for edge weight – there is no requirement for edge lengths to obey normal rules of geometry such as the triangle inequality. A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house; there might be several spanning trees possible. A minimum spanning tree would be one with the lowest total cost, thus would represent the least expensive path for laying the cable. -- 我老婆1 http://i.imgur.com/qcvvvGh.png
我老婆2 http://i.imgur.com/H44FJSx.jpg
我老婆3 http://i.imgur.com/1o6fSRO.jpg
我老婆4 http://i.imgur.com/cX1RE2J.jpg
我老婆5 http://i.imgur.com/g8in5mO.jpg
我老婆6 http://i.imgur.com/s6GAEQX.png
我老婆7 http://i.imgur.com/vJSjNPg.png
我老婆8 http://i.imgur.com/BPJVHDF.png
我老婆9 http://i.imgur.com/hnmzCi3.png
-- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.113.68.213 ※ 文章網址: https://www.ptt.cc/bbs/Marginalman/M.1483896520.A.752.html

01/09 01:32, , 1F
Dijkstra
01/09 01:32, 1F

01/09 01:33, , 2F
bellmandford
01/09 01:33, 2F

01/09 01:33, , 3F
prim kruskal
01/09 01:33, 3F
文章代碼(AID): #1OSdR8TI (Marginalman)
討論串 (同標題文章)
文章代碼(AID): #1OSdR8TI (Marginalman)