Re: [理工] 線代第八章觀念!

看板Grad-ProbAsk作者 (going faster)時間6年前 (2019/11/02 22:33), 6年前編輯推噓3(304)
留言7則, 3人參與, 6年前最新討論串2/3 (看更多)
來賺點P幣 ※ 引述《Aa841018 (andrew)》之銘言: : https://i.imgur.com/HHr7Dus.jpg
: 有點不理解詳解推論,A^tA=AA^t雖然沒找到相關敘述,但就當定義記住,這還沒問題 由定義假設A^TA有一非零特徵值λ跟對應特徵向量x A^TAx = λx AA^TAx = Aλx = λAx 可知A^TA AA^T 具有相同的特徵值 : rank(AA^t)=rank(A)=2....這裡不曉得是不是定義,還是做出來的結果,有點模糊 假設Ax = 0, A^TAx = 0 顯然所有Ax = 0的解都包含於A^TAx = 0 若A^TAx=0 則x^TA^TAx = (Ax)^T(Ax) = 0 可知A^TAx = 0的解也包含於Ax = 0 推得N(A) = N(A^TA) 則nullityA = nullity A^TA 由rank-nullity theorem可知 dim = rank + nullity 所以rankA = rankA^TA 同樣的假設A^Tx = 0, AA^Tx = 0 可得rankA = rankAA^T : 最大問題:AA^t不可逆,因此0為AA^t的一個eigenvalue…… : 這我無法理解,det=0等價於不可逆,但這反向不成立,但如果按照詳解說法,反向就成 : 立了,不曉得怎麼回事? 等價就是iff就是若且惟若就是過去可以回來也可以就是if and only if 由det=pi(eigenvalue)可知行列式=0 若且惟若 存在一特徵值 = 0 -- 標題 [問卦] 有沒有養id的八卦? 時間 Sat Nov 24 00:44:53 2012 ───────────────────────────────────────

11/24 00:48,
幹我當初養超久,馬的居然叫 new iPad
11/24 00:48
-- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.242.215.219 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Grad-ProbAsk/M.1572705232.A.68A.html

11/02 23:04, 6年前 , 1F
可知x同時也是Ax的解 -> 怎麼推到下一句的 ? 腦袋打結
11/02 23:04, 1F
(Ax)^T(Ax)即Ax的長度平方 (Ax)^T(Ax)=0當Ax=0

11/02 23:05, 6年前 , 2F
另外單看 (A^TA)^T 的話, (A^TA)^T = A^TA 非 AA^T
11/02 23:05, 2F
對欸 我改一下XD

11/02 23:06, 6年前 , 3F
還是說有哪邊替換能推得 AA^T 呢 ?
11/02 23:06, 3F

11/02 23:06, 6年前 , 4F
(指 rank 那段最後一句)
11/02 23:06, 4F
我那段先刪掉好了當時想錯 應該是無意義 就先照原本的證法吧

11/03 05:36, 6年前 , 5F
推得rank.....這裡看不太懂,麻煩解釋一下
11/03 05:36, 5F
好像有點亂 我重打了一次你看看

11/03 08:31, 6年前 , 6F
第一個的證法會有問題 要分成lambda等不等於0來討論 因
11/03 08:31, 6F

11/03 08:31, 6年前 , 7F
為Ax有可能根本就是0 那就不是eigenvector
11/03 08:31, 7F
※ 編輯: DLHZ (111.242.215.219 臺灣), 11/03/2019 11:15:29 ※ 編輯: DLHZ (111.242.215.219 臺灣), 11/03/2019 11:20:45
文章代碼(AID): #1TlPFGQA (Grad-ProbAsk)
文章代碼(AID): #1TlPFGQA (Grad-ProbAsk)