Re: [理工] 一階微分方程
※ 引述《JLintopPG (天下第一控)》之銘言:
: 1. Solve dy/dx = [y+√(y^2-x^2)] / x
令y = vx
y' = xv' + v
xv' + v = v + √[v^2 - 1]
=> v'
----------- = 1/x
√[v^2 - 1]
=> ln|v + √[v^2 - 1]| = lnx + c
=> |(y/x) + √[(y/x)^2 - 1]| = Ax
: 2. Solve dy/dx = [2√(xy)-y] / x
令y = vx
y' = xv' + v
xv' + v = 2√v - v
=> xv' = 2√v [1 - √v]
=> -ln[1 - √v] = lnx + c
=> x - √(xy) = A
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.249.203.124
※ 文章網址: https://www.ptt.cc/bbs/Grad-ProbAsk/M.1437907100.A.3E1.html
→
07/27 14:30, , 1F
07/27 14:30, 1F
→
07/27 14:30, , 2F
07/27 14:30, 2F
→
07/27 14:41, , 3F
07/27 14:41, 3F
推
07/28 01:59, , 4F
07/28 01:59, 4F
推
07/28 13:29, , 5F
07/28 13:29, 5F
推
07/28 14:38, , 6F
07/28 14:38, 6F
討論串 (同標題文章)