[理工] [線代] 矩陣
Let L:R^2->R^3 be the linear transformation defined by L(x)=(x2,x1+x2,x1-x2)^T.
Find the matrix representations of L with respect to the ordered bases [u1,u2]
and [b1,b2,b3],where u1=(1,2)^T,u2=(3,1)^T and b1=(1,0,0)^T,b2=(1,1,0)^T,
b3=(1,1,1)^T.
解答中
L(u1)=(-1)(1,0,0)^T+4(1,1,0)^T+(-1)(1,1,1)^T
L(u2)=(-3)(1,0,0)^T+2(1,1,0)^T+2(1,1,1)^T
我想請問以上的(-1,4,-1)跟(-3,2,2)是怎麼求得的呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.227.20.207
推
03/06 20:28, , 1F
03/06 20:28, 1F
→
03/06 20:28, , 2F
03/06 20:28, 2F
→
03/06 20:40, , 3F
03/06 20:40, 3F
討論串 (同標題文章)