Re: [線代] 向量空間問題

看板Grad-ProbAsk作者 (考個沒完)時間13年前 (2012/09/04 00:34), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/3 (看更多)
※ 引述《vinsanity313 (喔!)》之銘言: : 這是101年中央資工第12題的b選項,題目如下: : V為一向量空間,X, Y為V的子集 : Let V^x denote the set of all mappings from X to V. : Then V^x is a vector space. Let V be a vector space over a field F and let V^x = {f: f(x) in V for all x in X}. First, you need to prove that (V,+) is an abelian group where + is the function addition defined by (f+g)(x) := f(x) + g(x) for all x in V. We can define the additive identity h of V^x by h(x) = 0 for all x in X, where 0 is the additive identity of V. The remainder work is a lot of routines, we leave it to you. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.166.196
文章代碼(AID): #1GHDmhTG (Grad-ProbAsk)
文章代碼(AID): #1GHDmhTG (Grad-ProbAsk)