Re: [理工] [工數]-高階線性與非線性微分方程
※ 引述《zendla (夏夜薄荷)》之銘言:
: 2.Use the transformation z = sinx to solve [成大土木]
: 2
: d y dy 2
: ─── + (tanx) ── + (cos x)y = 0
: dx^2 dx
: ans: y = c1cos(sinx) + c2sin(sinx)
: 這題我無法轉成常係數類型的,那應該怎麼做?
令 z = sinx, dz/dx = cosx = sqrt(1-z^2)
dy/dx = (dy/dz)(dz/dx) = sqrt(1-z^2) (dy/dz)
d^2y/dx = d/dx (sqrt(1-z^2) (dy/dz))
= d/dz (sqrt(1-z^2) (dy/dz)) (dz/dx)
= (sqrt(1-z^2) (d^2y/dz^2) + 1/sqrt(1-z^2)/2*(-2z) dy/dz) sqrt(1-z^2)
= (1-z^2) d^2y/dz^2 -2z dy/dz
cosx = sqrt(1-z^2), tanx = z/sqrt(1-z^2)
原式可整理為
(1-z^2)(d^2y/dz^2) + (1-z^2)y = 0
若 1-z^2 = cosx ~=0
=> d^2y/dz^2 + y = 0
=> y = C1 cosz + C2 sinz
= C1 cos(sinx) + C2 sin(sinx)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.121.146.175
推
11/17 12:17, , 1F
11/17 12:17, 1F
討論串 (同標題文章)