Re: [理工] [工數]-拉氏又來了!! 跪求..
※ 引述《topee (eason)》之銘言:
: 題目:
: y" + 4y'-21y = 2e^-2t sin3t y(0)=1 y'(0)=0
: s+4 1 6
: Y = ───── + ───── ──────
: (s+7)(s-3) (s+7)(s-3) (s+2)^2 + 9
: 24 61 1
: 答案 y = ── e^-7t + ── e^3t - ── e^-2t sint3t
: 85 85 17
: 怎麼拆 都拆不出答案.....
2 6
s y(s) - sy(0) - y'(0) + 4sy(s) - 4y(0) - 21y(s) = ─────
(s+2)^2+9
3 2 2
2 s +4s +13s+4s +16s +52 +6
(s + 4s -21) y(s) = ─────────────────
(s^2+4s+13)
3 2
s + 8s + 29s +58
y(s) = ──────────────────
(s+7)(s-3) (s^2+4s+13)
61/85 24/85 As + B
= ────── + ──── + ──────
s-3 s+7 s^2 +4s +13
兩端乘s 取s->∞
61 24
1 = ── + ── + A A=0
85 85
原式的兩端s代0
58 61 24 B
── = ─── + ── + ───
-273 -255 595 13
-4930 = -5551 + 936 + 1785B
-315 = 1785B
3
B = - ───
17
61 3t 24 -7t 1 -2t
y(t) = ── e + ── e - ──e sin3t
85 85 17
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.105.159.190
※ 編輯: CRAZYAWIND 來自: 59.105.159.190 (01/31 17:32)
推
01/31 17:43, , 1F
01/31 17:43, 1F
推
01/31 17:43, , 2F
01/31 17:43, 2F
推
01/31 18:02, , 3F
01/31 18:02, 3F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 4 篇):