[理工] [離散]-鴿籠原理
Let S be a set of five positive integers the maximum of which is
at most 9 .Prove that the sums of the elements in all the nonempty
subsets of S cannot all be distinct.
解 : 考慮s中具有 1小於等於|A|小於等於3的子集 A
令A中的元素和為sumA , S中這種子集個數為 C5取1 +C5取2 +C5取3 =25個
sumA滿足1小於等於sumA小於等於 7+8+9=24 ,因為每個子集唯一對應一個元素和
由鴿籠原理知道必有兩個子集具有相同的元素和.
我想請問這一步驟 s中具有 1 小於等於|A| 小於等於 3 的子集A
是怎麼知道的呢? 7+8+9又是怎麼推導的呢?
謝謝指點
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.33.6.216
推
01/13 00:24, , 1F
01/13 00:24, 1F
→
01/13 00:24, , 2F
01/13 00:24, 2F
推
01/13 00:25, , 3F
01/13 00:25, 3F
→
01/13 00:25, , 4F
01/13 00:25, 4F
→
01/13 00:26, , 5F
01/13 00:26, 5F
推
01/13 00:29, , 6F
01/13 00:29, 6F
→
01/13 00:53, , 7F
01/13 00:53, 7F
討論串 (同標題文章)