Re: [理工] [工數]-Laplace逆轉換5題
※ 引述《makoto1016 (makoto1016)》之銘言:
: (1)
: -1 1
: £ [----------]=
: s(s^2+a^2)
排版超漂亮給推給推
-1 1 1
L { ───── ×──}
s^2 + a^2 s
1
= ── sin at * 1
a
t 1
= ∫ ── sin(aτ) dτ
0 a
-1 │t
= ── cos(aτ)│
a^2 │0
1
= ── ( 1 - cos(at) )
a^2
: (2)
: -1 a^2
: £ [ln(1+---)]=
: s^2
-1 s^2 + a^2
L { ln ───── }
s^2
-1
= L { ln │s^2 + a^2│ - ln s^2 }
-d
t f(t) = ── ( ln │s^2 + a^2│ - ln s^2 )
ds
-1 2s 2
tf(t) = L {- ───── + ── }
s^2 + a^2 s
tf(t) = 2 - 2 cos at
2 - 2 cos at
f(t) = ───────
t
: (3)
: -1 -1 a
: £ [tan ---]=
: s
-1 -a/s^2
tf(t) = -L {─────}
1 + (a/s)^2
-1 - a
= -L {──────}
s^2 + a^2
sin at
f(t) = ──────
t
: (4)
: -1 s
: £ [-----------]=
: (s^2+a^2)^2
f(t) ∞ s
L ── = ∫ ─────── ds
t s (s^2 + a^2)^2
1 1 │∞ 1 1
= - ── ───── │ = ── ─────
2 s^2 + a^2 │s 2 s^2 + a^2
1
= ── sin (at)
2a
: (5)
: -1 1
: £ [-----------]=
: (s^2+a^2)^2
1 1
= ───── ─────
s^2 + a^2 s^2 + a^2
1
= ── sin at * sin at
a^2
1 t
= ── ∫ sin a(τ) sin a(t-τ) dτ
a^2 0
-1 t
= ── ∫ cos a(t) - cos a(2τ-t) dτ
2a^2 0
-1 1 │t
= ── [ τcos(at) - ── sin a(2τ-t)]│
2a^2 2a │0
-1 1
= ── [ t cos(at) - ── (sin(at) - sin(-at)) ]
2a^2 2a
-1 1
= ── ( t cosat ) + ─── sin at
2a^2 2a^3
: 希望中間的步驟也能順便列出 麻煩各位了 謝謝...囧
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.118.234.83
※ 編輯: ntust661 來自: 140.118.234.83 (12/10 18:54)
推
12/10 18:54, , 1F
12/10 18:54, 1F
推
12/10 18:58, , 2F
12/10 18:58, 2F
推
12/10 19:15, , 3F
12/10 19:15, 3F
推
12/10 19:18, , 4F
12/10 19:18, 4F
→
12/10 19:22, , 5F
12/10 19:22, 5F
推
12/10 20:39, , 6F
12/10 20:39, 6F
→
12/10 20:39, , 7F
12/10 20:39, 7F
推
12/10 20:46, , 8F
12/10 20:46, 8F
→
12/10 21:12, , 9F
12/10 21:12, 9F
推
12/10 21:16, , 10F
12/10 21:16, 10F
推
12/10 21:18, , 11F
12/10 21:18, 11F
推
12/10 22:15, , 12F
12/10 22:15, 12F
推
12/10 22:17, , 13F
12/10 22:17, 13F
→
12/10 22:21, , 14F
12/10 22:21, 14F
推
12/10 22:48, , 15F
12/10 22:48, 15F
→
12/10 22:48, , 16F
12/10 22:48, 16F
推
12/10 22:49, , 17F
12/10 22:49, 17F
推
12/10 22:59, , 18F
12/10 22:59, 18F
推
12/10 23:01, , 19F
12/10 23:01, 19F
→
12/11 00:51, , 20F
12/11 00:51, 20F
→
12/11 11:15, , 21F
12/11 11:15, 21F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):