Re: [理工] [線代]-求特徵多項式
※ 引述《HP0 (cksh)》之銘言:
: [0 1 2 3 4 6 8 9 9 5 2 5 2 3 4 5]
: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: [5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
: 求特徵多項式
設此矩陣為A
gm(0) = nullity(A-0I) = 14
gm(√(1+2+3+4+6+8+9+9+5+2+5+2+3+4+5)) = gm(√68)
= nullity(A-√68I)
= 1
gm(-√(1+2+3+4+6+8+9+9+5+2+5+2+3+4+5)) = gm(-√68)
= nullity(A+√68I)
= 1
∴特徵多項式 = x^14(x-√68)(x+√68)
應該是這樣子吧......
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.47.68.110
推
11/15 15:06, , 1F
11/15 15:06, 1F
→
11/15 15:07, , 2F
11/15 15:07, 2F
→
11/15 15:08, , 3F
11/15 15:08, 3F
→
11/15 15:12, , 4F
11/15 15:12, 4F
→
11/15 15:19, , 5F
11/15 15:19, 5F
→
11/15 15:23, , 6F
11/15 15:23, 6F
推
11/15 15:29, , 7F
11/15 15:29, 7F
推
11/15 16:01, , 8F
11/15 16:01, 8F
→
11/15 16:03, , 9F
11/15 16:03, 9F
→
11/15 16:45, , 10F
11/15 16:45, 10F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):