Re: [考古] 線性代數/林秀峰/97上期中考

看板FCUProblems作者 ( 佛曰: ....)時間17年前 (2009/01/16 21:39), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ [本文轉錄自 FCU_Talk 看板] 作者: BoYiShiu (哩甘有良心...?) 看板: FCU_Talk 標題: Re: [考題][資訊系][線性代數][林秀峰 97上期中考] 時間: Mon Nov 3 20:12:20 2008 ※ 引述《Rockspirit (小白~*)》之銘言: : [ 1 -2 2] : 一、Let A = [-1 1 3] be 3×3 matrix Find A^-1 = ? : [ 1 -1 4] [-1 -6/7 8/7] [-1 -2/7 5/7] [0 1/7 1/7] : 二、Find the set of all solutions of the system of linear equations : X1 - 2X3 + X4 = 5 : 3X1 + X2 - 5X3 = 8 : X1 + 2X2 - 5X4 = -9 [x1] [ 2] [-1] [ 5] [x2]= a[-1]+b[ 3]+[-7] a,b屬於R [x3] [ 1] [ 0] [ 0] [x4] [ 0] [ 1] [ 0] : 三、Find λ = ? such that the following system of linear equations has : nontrival solutions and find corresponding solutions [x] to λ : [y] : (λ-1)x + 4y = 0 : 2x + (3-λ)y = 0 題目有沒有抄錯...數字很醜...=.= λ:-λ^2+4λ-11=0的解(自己用2a分之-b加減根號b平方-4ac代) [x]=[a ] [y] [-4a/(λ-1)] a屬於R : 四、(1)Determine whether the points (1,2,1)、(3,4,1) and (5,6,1) are : collinear? Y : (2)Find an equation of the plane passing through the points (0,1,0) : (-1,3,2) and (-2,0,1) -4x+3y-5z=3 : 五、Let A = [ 1 0 -2 1 0 ] be a 4×5 matrix : [ 0 -1 -3 1 3 ] : [-2 -1 1 -1 3 ] : [ 0 3 9 0 -12] : (1)Find the rank and nullity of A rank=3 nullity=2 : (2)Find a basis for the colum space of A [1 0 -2 0]^T [0 -1 -1 3]^T [0 3 3 -12]^T -- http://boyishiu.spaces.live.com/ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.172.113.247

11/04 01:24,
第3題題目沒錯,是老師題目真的這樣出...我懷疑老師出
11/04 01:24

11/04 01:24,
錯了!
11/04 01:24

11/04 13:04,
有夠醜...
11/04 13:04

11/04 17:14,
我覺得不是出錯耶 應該是你看不懂他的字XD
11/04 17:14
-- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.132.214.27
文章代碼(AID): #19S8t-Mh (FCUProblems)
文章代碼(AID): #19S8t-Mh (FCUProblems)