作者查詢 / painkiller
作者 painkiller 在 PTT [ Python ] 看板的留言(推文), 共58則
限定看板:Python
看板排序:
全部Gossiping1431HatePolitics491KingdomHuang397studyabroad372C_Chat181NBA148EAseries147photo129StarCraft125FuMouDiscuss117DIABLO116AfterPhD65PhD62Suckcomic60Python58CMWang56Stock55movie52joke49PublicIssue49Tech_Job43Immigration35nthujazz30Boston29marriage29CoC28Oversea_Job28sky27StarTrek27Baseball24EYESHIELD2124HCKuo24Hiking24Aviation21CCF21JinYong20NY-Yankees20SchoolRumble20sex20Coffee19ONE_PIECE19PeopleSeries19The-fighting19Militarylife18Heroes17Hunter17eSports16DeathNote15media-chaos14NCIS14NorthAmerica14PushDoll14Tennis14nCoV201912Tsao12Fund11RealPlaying10MAJOR9Old-Games9SuperHeroes8VISA8Zombie8gallantry7GRE7Monkeys7SFFamily7WorldCup7CFP6Foreign_Inv6MLB6photo-buy6TOEFL_iBT6WomenTalk6BERSERK5CFantasy5cookclub5Employee5FLAT_CLUB5Flickr5Hate5IA5IntlShopping5japanavgirls5MenTalk5Military5RedSox5SMSlife5Soft_Job5Sportcenter5TigerBlue5China_Travel4FCU_EE97A4KINGDOM4KMT4KS98-3024L_TalkandCha4Lost4NTUST-ECE4PCSH91_3054PttHistory4Salary4SF4Teacher4Adachi3BabyMother3BBSmovie3CCChang_993CLHu3CPBL3CultureShock3DC3DiabloEX3Emergency3GreenParty3hardware3Headphone3HIMYM3HK_Comics3HSNU_8203KOTDFansClub3LaTeX3medstudent3mud3NARUTO3NBA_Film3Notebook3NSwitch3NTHU-MSE093NTUSFA3Ocean3Olympics_ISG3RockMetal3Shima-Kosaku3specialman3SSSH-16th-Fk3Stephen3Tainan3Tobacco3TTSH-12th3173TY_Research3WarCraft3wretch3YAKYU3ArakawaCow2ASHS-95RN2Boy-Girl2CEM942ck57th3292ckbc2Cobras2Cross_talk2CVS2DSLR2Education2gay2Google2Guardians2haiku2HCSHch13_3112Hornets2HotBloodYuan2Hualien2ID_Problem2iOS2Isayama2KS93-3202KS94-3202KSU2LeBronJames2NCCU_FHL2NFU2NHSH13th3052NTHU_STAT942NTU2NTUCivilism2NTUE-PD022NTUND902NYUST2Odoko-juku2Orl-Magic2PublicHealth2PublicServan2Rockman2Sangokumusou2ScenicPhoto2Shokugeki2Stargate2Taitung2TBBT2TizzyBac2TORIKO2TPC_Police2TryingTimes2TTU-AMath2Agriculture1AndyLau1ASIA-uni1Asian-MLB1Aves1Bank_Service1basketballTW1BBSview1Beauty1BigSanchung1Billiard1BLAZERS1Blog1Buddhism1CAFENCAKE1Catholic1CCJH12th3111CCSH_91_3201CH7th3101Chicago1ChicagoBulls1ChiLing1chinese-ball1Christianity1CHSH-93-3041ChthoniC1ck57th3201ck_17_3011cksh79th3101cksh80th3141cksh83rd3071CLHS-53-131Conan1consumer1CPU_FS7411creditcard1Cross_Life1CSMU-D891CSMU-HSA961CSMU-MED971CSMU-MIS961customers1dlsh-7th-3031DPP1Dragons1DummyHistory1Ecophilia1Expansion071Fantasy1FCSH_133101FCU-INS93B1FishShrimp1FJU-ACCR941FJU-Laws921FJU-MBA961FORMULA11FTV1Germany1HCHS923161HIS_Basket1HK-movie1home-sale1HSNU_10081HSNU_10451HSNU_10731HSNU_10951HSNU_9511HSNU_9891HY-40-Xin1Ikariam1ILSH-973051Instant_Mess1Jacky_Woo1Japan_Travel1Japanese-B941jazz1Jeremy_Lin1JOB-Hunting1Jolin1kartrider1Keelung1KERORO1Key_Mou_Pad1KinKi-Kids1kochikame1Koei1KOF1KS91-3191KS94-3021KS94-3121L_RelaxEnjoy1LaClippers1LD_IM93-11Left_Village1Lomo1MAC1MartialArts1Master_D1Matsuzaka_181MCU_Talk1MdnCNhistory1MiamiHeat1Miaoli1MingDao32H11MLB-TW1MONSTER1MP3-player1MrFullswing1MSEVolley1NCHU-AGR071NCHU-KF1NCHU_MBA_SB1NCKU_EARTH981NCKU_MEPhC1NCTU_basebal1NCTU_INT_NDL1NCUECON961NCYU_BE_95A1NDHU-His1001NeedFood1NEW_ROC1Ninomiya1Nintendo1NIU-FS_94a1NKFUST-CCE901NPB_twHEROS1NSYSU-BBTeam1NTHU-EE-CAPT1NTNUMasCom001NTOU-MME-99B1NTPU-JLAW941NTPU-LAND90B1NTU-EM931NTU-Jazz1NTU-Karate1NTUCH-901NTUcontinent1NTUE-Art951NTUE_Nse961NTUmed911NTUPHOTO1NTUSTMIS_B911NTUT_EE491A1NUK-APIBM1NUK_AC1001NUU-EO-97A1NUU_ER1NUU_Motor1NUU_Talk1NYUST97_MBA1outdoorgear1P2PSoftWare1pal1PC_Shopping1PHX-Suns1phys931Policy1politics1Psy-Team1Ptt-Charity1rent-exp1RPGMaker1San-Ying1Saxophone1Scifi_Drama1SCU_Law101D1scu_transfer1shoes1SHU_PRAD961SlamDunk1sp_teacher1SpaceArt1Spain_PL1SpongeBob1Spurs1SSSH-03rd3111StarWars1StatSoftball1StudyGroup1Sunrise1SWORD1TA_AN1TAKMING1TFSHS61th3021TFSHS62th3161TFSHS67th3241THU_BA20001Tigers1TKU_HisSB1TKU_TSPCB931TMU9711TNFSH98th1Tokusatsu1Tour-Manager1TPI491TTU-AFL1UTAH-JAZZ1VoIP1Wanhua1weiyin1Weyslii1WRADPE1X-Japan1Yakyu_spirit1YomiuriGIANT1YZUfinGrad951<< 收起看板(400)
6F推: 還是用anaconda python吧04/17 01:49
1F→: 查查 pandas.cut怎麼用02/09 23:34
1F→: 你的'fish = '會把舊的data frame洗掉01/31 00:33
3F→: 迴圈外 'fish_all = ' 先讀第一個url01/31 09:15
4F→: 迴圈內 fish_all = pd.concat([fish_all, fish] ...01/31 09:16
5F→: 或是append01/31 09:16
1F→: df['年'].astype(str)+'.'+df['月'].astype(str)09/26 21:17
5F推: 1. a = sort([int(i) for i in a])05/03 09:25
6F→: 2. [a[i] for i in range(len(a)) if a[i] == a[0]+i]05/03 09:26
7F→: 一定要用str存數字的話再轉回去就好了05/03 09:27
1F→: 可能要先找出index,如 df[df.name == 'vip*'].index10/13 23:51
2F→: 頭尾有vip另外處理10/13 23:52
3F→: 其他before/after 就index array +1/-1就可以取值了10/13 23:52
5F→: 看來是apple的電腦,主要用來科學運算的話用anaconda吧07/07 02:12
1F推: 最簡單的方法還是 df.plot.bar(x='a',y='b')03/25 22:33
2F→: 如果你不想用pandas內建的話要把timestamp轉成別的03/25 22:34
3F→: 比如說datetime之類的... pd.to_datetime(df['a'])03/25 22:36
4F推: pandas的timestamp跟datetime兩者不相容是有點擾人...03/26 10:18
5F推: 要不就先轉成datetime用matplotlib畫03/26 10:27
6F→: 然後用matplotlib.date設定formatter跟locator03/26 10:29
7F→: 繼續用df.plot的話 str轉timestamp後還要再轉一次03/26 10:29
8F→: df['a']=df.a.map(lambda t: t.strftime('%H-%M-%S'))03/26 10:30
8F推: numpy.trapz 把每個數據點都積一遍03/17 02:15
9F→: 然後numpy.interp1d找出50%面積的x值03/17 02:15
10F→: 當然數據量如果很大你就binary search去猜吧03/17 02:16
5F推: 如果單位是兩種,只是square feet字串長不一樣02/21 10:11
6F→: df[df.unit != 'm2'].Value*0.092902/21 10:16