作者查詢 / choral
作者 choral 在 PTT [ DataScience ] 看板的留言(推文), 共14則
限定看板:DataScience
看板排序:
全部Mechanical1637TFSHS68th316515graduate432Tech_Job394home-sale250CareerPlan191Examination184Military96Soft_Job84NTUKS82Taoyuan50Evangelion37Salary36toberich35Mind34joke33NTU33Aquarius32Gov_owned27NTUMEB9624GHIBLI23marriage22NTUDormM721Stock21car19Deutsch17painting16PH-sea16DataScience14NTUcourse14BabyMother10ChangHua10PushDoll10NTUDormM69SENIORHIGH9asciiart8Boy-Girl8Gintama8GVO8Interior8Zastrology8Patent7sex7TOEIC7ARIA6ChungLi6Oversea_Job6TFSHS58th3256TFSHS68th3246book5Militarylife5NTUMETA5CY-academic4Gossiping4TaichungBun4NHSH13th3053NTU-Exam3NTU-NANTOU3soho3Aviation2C_Chat2Ecophilia2electronic2Electronics2Hunter2mud_sanc2NtuDormM12TaichungCont2WomenTalk2YUGIOH2AllTogether1AnimMovie1ASHS-93-li1b88610xxx1B97305XXX1Buddhism1C_Sharp1Cad_Cae1Campus-plan1CarShop1CGSH88th3181CHING1CHSH-3191ck59th3071Falcom1FJU-Law20071FSHS-95-3081Gemini1historia1HomeTeach1Hsinchu1Language1Libra1movie1NCCU07_Eco1NCCU_ECONO1NKFUST-CCE901NTPU-CSIE981NTPU-ECONM961NTU_Beauty1NTU_BOTDorm1NTU_BOTDorm21NTUdent961NTUfin011NTUMath981NTUMSE-961NTURugbyTeam1P_Management1pesoftball1PhySoftball1PokeMon1Sagittarius1SCU_Chin96C1SFHS1shinkai1StupidClown1Suckcomic1TFSHS68th3101THU_Talk1Utada1VET_961Viator96Chia1Vietnam1wonderland1<< 收起看板(124)
首頁
上一頁
1
下一頁
尾頁
5F推: 太神啦!04/14 09:53
1F推: 我過去的經驗是打亂的表現會比較好,不過也得看hidden s04/12 01:15
2F→: ize和 layer number的搭配,這種應該一層就很有效了04/12 01:15
3F→: 我沒講到重點,RNN的bp只在[n1…n20]間執行,所以到下一04/12 01:24
4F→: 個index時,grad會重新計算,RNN不會記錄跨index的因果關04/12 01:24
5F→: 係,差別在於訓練時index打亂讓權重比較不會容易往某一個04/12 01:24
6F→: 趨向靠攏04/12 01:24
7F→: 如有錯誤 還請大德們不吝指正 感謝04/12 01:26
8F推: 我猜測是learning rate 同時也注意一下 loss的起伏 也許04/12 11:46
9F→: 有overfitting的可能性04/12 11:46
10F推: 有個測試方法 你取訓練集最後100或200個來訓練,看看效果04/12 11:52
11F→: 是不是和整個訓練集差不多,如果是,代表這個dataset具有04/12 11:52
12F→: 短期時效性,遠期的資料根本用處不大04/12 11:52
13F→: 因此打亂的效果並不好04/12 11:53
首頁
上一頁
1
下一頁
尾頁