看板 [ tutor ]
討論串[解題] 高一下數學
共 3 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓1(1推 0噓 1→)留言2則,0人參與, 最新作者chillion (-冷淡.冷靜.冷漠-)時間17年前 (2009/03/20 23:26), 編輯資訊
0
0
0
內容預覽:
原式似乎有錯,所以我改成 X^2 + 2X.log 5 +log (5/2) = 0. 上式 = X^2 + 2X.(1-log 2) + 1-2log 2. =[X+1][X+(1-2log 2)] = 0. 所以 α,β 分別為 -1, -1+2log 2 = log(2/5). 則 10^α

推噓1(1推 0噓 1→)留言2則,0人參與, 最新作者kyoooooo123 (快樂的大學生)時間17年前 (2009/03/20 23:23), 編輯資訊
0
0
0
內容預覽:
我把題目修改了一下. ==> X^2 + 2X‧log5 - log(2/5) = 0. 之後變成. ==> X^2 + 2X‧log5 - (log2 + log5)(log2 - log5) = 0. 交叉相乘後得到. ==> [X + (log2 + log5)][X - (log2 - lo
(還有6個字)

推噓5(5推 0噓 8→)留言13則,0人參與, 最新作者natosay (呼嚕呼嚕)時間17年前 (2009/03/20 22:33), 編輯資訊
0
0
0
內容預覽:
1.年級:高一下. 2.科目:數學. 3.章節:翰林 第一章 指數與對數. 4.題目:X^2 + 2X.log 5 +log (2/5) = 0. 兩根為αβ,則10^α + 10^β = ?. Ans. 1/2. 5.想法:. α+β = -2 log 5 α.β = log (2/5). 直接算
(還有15個字)
首頁
上一頁
1
下一頁
尾頁