Re: [解題] 高一物理,古典物理,靜力學

看板tutor作者 (高級伴讀小書僮)時間17年前 (2009/01/08 23:09), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《aaagidy (徵二手印鈔機)》之銘言: : 4.題目: : | | 見左圖,三球一樣大,白球10Kg,黑球5Kg : | | 裝在箱子內,箱子的寬度剛好等於兩倍球直(圖不好畫) : | ● | 請問A、B、C、D(球與箱子接觸點)各點作用力 : A |●○| D 以及底部黑白球間作用力 :  ̄ ̄ ̄ : B C : 5.想法: : 3.問題在此:我將b球以三力共點解,力圖分解如下 : 符號說明:F箱子給予b球支撐力 : F F(A),A點作用力 : ↑ F(ab),ab兩球作用力 : b→F(A) 角度說明:F與F(ab)夾角90+60=150度 : ↙ F與F(A)夾角90度 : F(ab) F(A)與F(ab)夾角90+30=120度 : 根據拉密定律 : F F(A) : -------- = --------- : sin120 sin150 : 我帶F=15,得到F(A)=5√3 : 但解答答案是A=D=5/√3 : bc之間作用力=0 b為什麼要帶5,這個問題牽涉到拉密定律的推導 相信你的認知是:若"三力"共點,則......... 顯然拉密定律的三個力,僅表示"三個"單一的力 但此時b球所受的力不止3個力。 只是這些力恰巧都分別在三個不同的方向....(方向總數為3) 所以為了要符合拉密定律的形式。 我們可以把同方向的數個力合而為一 於是三個方向分別有"三個"單一的"合力" 由以上可知。若為多力平衡時(力總數大於3),方向總數為3 可以把數個力分別合成為三個方向的力,應用拉密定律來解。 就如同一直線上有數個力而平衡(同向與反向皆有), 我們會把同方向與反方向的力合成為兩個力。 最後同向的合力與反向的合力,量值大小要相同。是一樣的道理。 物理....就是舉一反三,用一貫的方式去推廣啊!!!XDD -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.204.74.64

01/09 00:41, , 1F
推一個
01/09 00:41, 1F
文章代碼(AID): #19PXT57a (tutor)
文章代碼(AID): #19PXT57a (tutor)