Re: [微分]偏導數

看板trans_math作者 (但願真的能夠實現願望)時間12年前 (2013/05/17 19:41), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《rebe212296 (綠豆冰)》之銘言: : 1. : Let f:R^2→R be defined by f(x,y)=√|xy| for all (x.y)屬於R^2 : Show that f_x and f_y both exist on R^2 and continuous on R^2\{(0,0)} : but f is not differentable at (0,0). : 2. : Let f:R^2→R be defined by f(x,y)=[xy(x^2-y^2)]/(x^2+y^2) if(x,y)≠(0,0) : and f(x,y) = 0 if(x,y)=(0,0) : Show that f_xy(0,0) and f_yx(0,0) both exist but are not equal. : 請問以上兩題怎麼解? 謝謝! f(x,0) - f(0,0) 2. f (0,0) = lim ----------------- x x→0 x - 0 0 - 0 = lim ------- = lim 0 = 0 x→0 x x→0 f(0,y) - f(0,0) f (0,0) = lim ----------------- y y→0 y - 0 0 - 0 = lim ------- = lim 0 = 0 y→0 y y→0 x≠0 f(x,y) - f(x,0) f (x,0) = lim ----------------- y y→0 y - 0 xy(x^2 - y^2) --------------- - 0 x^2 + y^2 = lim --------------------- y→0 y - 0 (x)(x^2 - y^2) (x)(x^2 - 0) = lim ---------------- = -------------- = x y→0 x^2 + y^2 x^2 y≠0 f(x,y) - f(0,y) f (0,y) = lim ----------------- x x→0 x - 0 xy(x^2 - y^2) --------------- - 0 x^2 + y^2 = lim --------------------- x→0 x - 0 y(x^2 - y^2) y(0 - y^2) = lim -------------- = ------------ = -y x→0 x^2 + y^2 y^2 f (0,y) - f (0,0) x x f (0,0) = lim -------------------- xy y→0 y - 0 -y - 0 = lim -------- = lim -1 = -1 y→0 y - 0 y→0 f (x,0) - f (0,0) y y f (0,0) = lim ------------------- yx x→0 x - 0 x - 0 = lim ------- = lim 1 = 1 x→0 x - 0 x→0 ∴ f (0,0) and f (0,0) both exist but are not equal xy yx -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.24.195.55
文章代碼(AID): #1HbXTj0H (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
微分
0
1
完整討論串 (本文為第 2 之 2 篇):
微分
0
1
文章代碼(AID): #1HbXTj0H (trans_math)