Re: [考古] 中興99年

看板trans_math作者 (再生)時間14年前 (2011/06/25 17:07), 編輯推噓2(206)
留言8則, 3人參與, 最新討論串3/3 (看更多)
※ 引述《boss913 (伯斯)》之銘言: : http://recruit.nchu.edu.tw/college-exam/transfer/transfer-index2009.htm : 第二題是硬算嗎= =? Use Leibniz rule and Chain rule 1 f'(x) = ----------------- * g'(x) [1+g(x)^3]^1/2 g'(x) = [1+sin(cos(x)^2) ] *(-sinx) f'(1/2π) = 1 * g'(x) = (1+sin0) * (-sin(1/2π) = 0 cos(1/2π)=0 so g(x) = 0 : 5.(a),6,7,9不會@@ : 希望有高手解答~3Q 5.(a) Use 分式積分 5 4 x + x = x(x + 1) 3 2 1 A Bx + Cx + Dx +E ∫ -------- dx = ∫[------ + ------------------ ] dx 5 4 x + x x x + 1 Solve A,B,C,D,E=? get five equation A + B = 0 ,C=D=E=0 , A= 1 so 3 1 1 -x 4 ∫------ dx = ∫[---- + ----- ] dx = ln|x| - ln | x + 1| +c 5 4 x + x x x + 1 6. Area of surface by rotating respect to x-axis : A = ∫2πyds 2 2 2 where ds = dx + dy dx = -6costcostsintdt dy = 6sintsintcostdt ds = 6sintcost dt 3 A = ∫2π2sin (t) 6sintcostdt 24π = 24π / 5 (1-0) = ----- 5 9. set a = v - u v = a + b + 1 b = u - 1 u = 0 + b + 1 |J| = 1 2 2 (a+1) (a+1) 1 ∫∫ e dbda = ∫(a+1) e d (a+1) = ----- (e - 1) 2 b = 0 , b = 1 , a + 1 =b , a = 0, is new R' -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.122.244 ※ 編輯: rygb 來自: 114.34.122.244 (06/25 19:50)

06/25 20:42, , 1F
請問如何得知a b需那樣假設
06/25 20:42, 1F

06/25 20:56, , 2F
其實想蠻久的
06/25 20:56, 2F

06/25 20:56, , 3F
先畫出本來UV區域 應該會多少有靈感
06/25 20:56, 3F

06/25 20:57, , 4F
然後接下來是exp(x^2) 之形式通常要換序
06/25 20:57, 4F

06/25 22:08, , 5F
謝囉~研究中~~~
06/25 22:08, 5F

06/25 23:05, , 6F
最後一題不太會@@變數換完之後就不太懂了
06/25 23:05, 6F

06/25 23:18, , 7F
變數變換完 是一般Jacobian 問題
06/25 23:18, 7F

06/25 23:19, , 8F
先找出原本r的邊界條件 再去換
06/25 23:19, 8F
7. x = 2 cos t - cos 2t y = 2 sin t - sin 2t Def: vertical tangent : dx = 0 and dy ≠ 0 horizontal tangent : dy = 0 and dx ≠ 0 So first we use the condition to find vertical tangent: dx = - 2 sin t + 2 sin 2t = 0 so sin t = 2 cos t sin t gives that sin t ( 1 - 2 cos t) = 0 sin t = 0 or cos t = 1/ 2 --> t = 0 , π , ±1/3π Same , find dy = 0, 2 2 2 dy = 2 cos t - 2 cos 2t = 0 cost = cos t - sin t =2 cos t - 1 1 ± 3 cos t = -------------- = -1/2 or 1 gives t = 0 , ±2/3π 2*2 by def t = 0 , dx=0 dy=0 , so delete it. and by the Domain [0,3/2π] we could get the answer vertical tangent (-3, 0) , ( 3/2 , √3/2) horizontal tangent (-1/2, 3√3/2) This is a "cardioid" you can plot it by: "plot x = 2cost - cos2t and y = 2sint -sin2t" enter the word above in this site: http://www.wolframalpha.com/ ※ 編輯: rygb 來自: 114.34.122.244 (06/26 00:50)
文章代碼(AID): #1E1QL8zR (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
考古
1
6
完整討論串 (本文為第 3 之 3 篇):
考古
1
6
文章代碼(AID): #1E1QL8zR (trans_math)