Re: [微分] 兩題證明

看板trans_math作者 (小彥oO)時間15年前 (2011/04/01 20:38), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
第二題照反過來做第一題就好囉! The def of concave up:all the points in an open interval I should be above any tangent lines in this interval. In other words,f'(x) should be increasing in this interval. Consider an open interval I:(a,b) b>a and f(x) is define on any x belongs to I Set a tangent line y=f(a)+f'(a)(x-a) Then by Mean value theorem there is a number c between (a,b) such that f(x)-f(a)=f'(c)(x-a) since f''(x)>0 for any x belongs to (a,b) f'(x) is increasing on I. f'(a)<f'(c) then multipling the both sides by x-a (>0) f'(a)(x-a)<f'(c)(x-a) then adding bothsides by f(a) f(a)+f'(a)(x-a)<f(a)+f'(c)(x-a) so we got y>f(a)+f'(a)(x-a) Q.E.D. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.127.33.35
文章代碼(AID): #1DbSTOpw (trans_math)
文章代碼(AID): #1DbSTOpw (trans_math)