Re: [考古] 馬克勞林和重積分

看板trans_math作者 (Roger)時間16年前 (2009/03/28 00:12), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《zxc321 (堅持到底 )》之銘言: : 1.Let f(x) = (1+x)^ (1/2) + (1-x)^ (1/2) : (a) Find the Maclaurin series for f : (b) Find (4) (51) : f (0) and f (0) : 請問(a)是要我導馬克的公式嗎? (b)小題 我不會算 : 2. : (a) Evaluate ∫∫ e^(x+y) where R is given by the inequality : R : |x|+|y|≦1. : (b) Let f be continuous on [0,1] and R be the triangular region with : vertices (0,0),(1,0)and (0,1) show that : ∫∫f(x+y)dA = ∫[0,1] uf(u)du : R : 謝謝~~ --------------------------------------------------------------- 1. ∞ ∞ (a) f(x) = Σ (0.5 C k)(x^k) + Σ (0.5 C k)((-1)^k)(x^k) k=0 k=0 ∞ = 2 Σ (0.5 C 2k)(x^(2k)) k=0 (b) (4) f (0) = 2(0.5 C 4)(4!) (51) f (0) = 0 2. (a) 令 u=x+y,v=x-y 1 1 所求 = ∫ ∫ exp(u) du dv -1 -1 = 2(e-1/e) (b) 令 u=x+y,v=x-y 1 u 所求 = ∫ ∫ f(u) dv du 0 -u 1 = ∫ 2u f(u) du 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.175.72.60

03/28 18:49, , 1F
謝謝 太感謝了~~
03/28 18:49, 1F
文章代碼(AID): #19pFhU6B (trans_math)
文章代碼(AID): #19pFhU6B (trans_math)