Re: [微分] 問題好多好多...

看板trans_math作者 (希望願望成真)時間17年前 (2008/11/01 16:17), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《victor7935 (victor)》之銘言: : 求 : 在這個曲線上 : (x^2+y^2)^2 = x^2 - y^2 : 4個水平切線的點 >..< 2(x^2+y^2)(2x+2yy') = 2x -2yy' y' = 0 2(x^2 + y^2) = 1 代入原式 (1/2)^2 = x^2 - y^2 解出 x=±√(3/8) y=±√(1/8) 另解 此圖對x,y軸對稱 只需考慮第一象限 R^4 = R^2 - 2R^2 (sint)^2 = R^2 [ 1 - 2(sint)^2] => R^2 = cos2t t = -π/4 -> π/4 and 3π/4 -> 5π/4 x = Rcost y = Rsint dR 2R--- = -2sin2t dt dy -sin(2t)sint -- = ------------- + √cos2t * cost dt √cos2t dx -sin(2t)cost -- = --------------- - √cos2t * sint dt √cos2t cos(3t) -------- = 0 -sin(3t) 3t = 3π/2, π/2, 5π/2, 7π/2,..... => t = π/6 x = √(3 /8) y = √(1/8) 四個點為(±√(3/8) , ±√(1/8)) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.102.144

11/02 19:33, , 1F
(1/4)=x^2-y^2.....這我不會解!!= = '
11/02 19:33, 1F

11/08 01:41, , 2F
和2(x^2 + y^2) = 1聯立解x^2和y^2
11/08 01:41, 2F
文章代碼(AID): #19312ftU (trans_math)
文章代碼(AID): #19312ftU (trans_math)