Re: [微分] 問題好多好多...
※ 引述《victor7935 (victor)》之銘言:
: 求
: 在這個曲線上
: (x^2+y^2)^2 = x^2 - y^2
: 4個水平切線的點 >..<
2(x^2+y^2)(2x+2yy') = 2x -2yy'
y' = 0
2(x^2 + y^2) = 1
代入原式
(1/2)^2 = x^2 - y^2
解出 x=±√(3/8)
y=±√(1/8)
另解
此圖對x,y軸對稱
只需考慮第一象限
R^4 = R^2 - 2R^2 (sint)^2
= R^2 [ 1 - 2(sint)^2]
=> R^2 = cos2t t = -π/4 -> π/4 and 3π/4 -> 5π/4
x = Rcost
y = Rsint
dR
2R--- = -2sin2t
dt
dy -sin(2t)sint
-- = ------------- + √cos2t * cost
dt √cos2t
dx -sin(2t)cost
-- = --------------- - √cos2t * sint
dt √cos2t
cos(3t)
-------- = 0
-sin(3t)
3t = 3π/2, π/2, 5π/2, 7π/2,.....
=> t = π/6
x = √(3 /8)
y = √(1/8)
四個點為(±√(3/8) , ±√(1/8))
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.124.102.144
推
11/02 19:33, , 1F
11/02 19:33, 1F
→
11/08 01:41, , 2F
11/08 01:41, 2F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):