Re: [極限] 請教兩題極限的證明
※ 引述《phantom997 (囧)》之銘言:
: 1.Prove that lim f(x)=L lim f(x)=M,
: x->c x->c
: then L=M
設 L =/= M
不失一般性下
設 L > M
由 lim f(x) = L 知
選定一任意小之正e < │M-L│/2
可找到一d使│f(x)-L│< e, 0 <│x-c│< d
且同時又滿足│f(x)-M│> │L-M│-│f(x)-L│>│M-L│/2
顯然與lim f(x) = M極限的定義牴觸
x->c
所以矛盾
=> L = M得證
: 2.Suppose that lim f(x)=L and that f(a) exists(though it
: x->a
: maybe different from L).Prove that f is bounded on some
: interval containing a;that is,show that there is an interval
: (c,d) with c<a<d and a constant M such that |f(x)| < M
: =
: for all x in (c,d).
: 謝謝大家囉!!
lim f(x)=L
x->a
選定任意小之e 可找到k使得 │f(x)-L│< e, 0 <│x-a│< k
=> L-e < f(x) < L+e , a-k < x < a+k
令c = a-k
d = a+k
choses M >= max(│L│+ e , │f(a)│)
then │f(x)│<= M for all x in (c,d)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.124.101.106
推
09/29 11:19, , 1F
09/29 11:19, 1F
→
09/29 11:19, , 2F
09/29 11:19, 2F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):