Re: [考古] 93台聯大填充第二題

看板trans_math作者 ( )時間17年前 (2008/06/30 13:16), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/3 (看更多)
※ 引述《losew (風城小菊花)》之銘言: : Let L be the line tangent to the polar curve r(θ)=sinθ-cosθ/sinθ+cosθ : atθ=0.The equation of L in x and y is _____. : 我是想先解出dy/dx,但是超級複雜...... : 有高手會的嗎?? sinθ-cosθ r(θ) = ----------- sinθ+cosθ sinθcosθ - (cosθ)^2 x(θ) = (r(θ))(cosθ) = ---------------------- sinθ+cosθ dx (cos2θ+sin2θ)(sinθ+cosθ)-(cosθ-sinθ)(sinθcosθ - (cosθ)^2) ---- = ------------------------------------------------------------------ dθ (sinθ+cosθ)^2 (sinθ)^2 - (sinθ)(cosθ) y(θ) = (r(θ))(sinθ) = -------------------------- sinθ+cosθ dy (sin2θ-cos2θ)(sinθ+cosθ)-(cosθ-sinθ)((sinθ)^2 - sinθcosθ) ---- = ------------------------------------------------------------------ dθ (sinθ+cosθ)^2 dy (dy/dθ) ---- = ---------- dx (dx/dθ) (sin2θ-cos2θ)(sinθ+cosθ)-(cosθ-sinθ)((sinθ)^2 - sinθcosθ) = ------------------------------------------------------------------ (cos2θ+sin2θ)(sinθ+cosθ)-(cosθ-sinθ)(sinθcosθ - (cosθ)^2) dy | (-1)(1) - (1)(0) -1 ----| = ------------------- = ---- dx |θ=0 (1)(1) - (1)(0-1) 2 | x = (r(θ))(cosθ) | = -1 |θ=0 | y = (r(θ))(sinθ) | = 0 |θ=0 -1 因此所求直線方程式為 y = (---)(x+1) 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21
文章代碼(AID): #18Q6mXm1 (trans_math)
文章代碼(AID): #18Q6mXm1 (trans_math)