Re: [積分] 96中興

看板trans_math作者 ( )時間17年前 (2008/06/29 12:44), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《freshcute (咕嚕咕嚕)》之銘言: : ∫cos(lnx)dx : 請問要怎麼解呢0.0 令 y = lnx , 則 x = e^y => dx = e^y dy ∫cos(lnx) dx = ∫(cos(y))(e^y) dy = ∫(e^y)(cos(y)) dy = (e^y)(sin(y)) - ∫(e^y)(sin(y)) dy (令 u = e^y , dv = cos(y) dy , 則 du = e^y dy , v = sin(y)) = (e^y)(sin(y)) - ((e^y)(-cos(y)) - ∫(e^y)(-cos(y)) dy) (令 u = e^y , dv = sin(y) dy , 則 du = e^y dy , v = -cos(y)) = (e^y)(sin(y)) + (e^y)(cos(y)) - ∫(cos(y))(e^y) dy (2)(∫(cos(y))(e^y) dy) = (e^y)(sin(y)) + (e^y)(cos(y)) (e^y)(sin(y)) + (e^y)(cos(y)) ∫(cos(y))(e^y) dy = ----------------------------- + c 2 (x)(sin(lnx)) + (x)(cos(lnx)) ∫cos(lnx) dx = ----------------------------- + c 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.29.31
文章代碼(AID): #18PnCNdD (trans_math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
積分
1
3
完整討論串 (本文為第 2 之 2 篇):
積分
1
3
文章代碼(AID): #18PnCNdD (trans_math)