Re: [微分] 關於隱函數微分

看板trans_math作者 (cola)時間18年前 (2007/07/10 03:41), 編輯推噓2(202)
留言4則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《kopuck (大便超人)》之銘言: : 請教大大們 關於微分的問題 : 因為算另一題相似的結果答案都是0 : 心裡覺得怪怪的><所以想上來請教大大們 : 原題:y=f(x) (xy)^1/2+x^2=x 求f'(1) : " ^ "是平方 : 我是先用隱函數微分算出dy/dx, : 再來是先以x=1帶回原式算出y, : 在一起帶入dy/dx 這樣算法是正確的嗎?? : 萬一 x=1代入原式的時候,出現兩個y時該如何是好呢?? : (還是說不會這樣出咧) : 謝謝 不太懂你的問題在哪 微一次給你好了 原式x=1代入得到f(1)=0 整個式子對x微分 1 -1/2 ---(xy) (y+xy') + 2x = 1 2 -1/2 (xy) (y+xy') = 2(1-2x) 1/2 y'=[2(1-2x)(xy) -y]/x 1/2 f'(1)= [2(-1)[f(1)] -f(1)]/1 =0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.117.70.29

07/10 17:08, , 1F
大大有個地方我覺得怪怪的 就是第一步驟
07/10 17:08, 1F

07/10 17:11, , 2F
連鎖律後 d(xy)/dx=y+xy'感覺妳少了一個x
07/10 17:11, 2F

07/10 17:14, , 3F
還有y
07/10 17:14, 3F

07/11 00:32, , 4F
對 我錯了 XD
07/11 00:32, 4F
※ 編輯: goshfju 來自: 59.117.73.176 (07/11 00:35)
文章代碼(AID): #16aezQ2L (trans_math)
文章代碼(AID): #16aezQ2L (trans_math)